// Copyright 2005 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "snappy.h" #include "snappy-internal.h" #include "snappy-sinksource.h" #ifndef SNAPPY_HAVE_SSE2 #if defined(__SSE2__) || defined(_M_X64) || \ (defined(_M_IX86_FP) && _M_IX86_FP >= 2) #define SNAPPY_HAVE_SSE2 1 #else #define SNAPPY_HAVE_SSE2 0 #endif #endif #if SNAPPY_HAVE_SSE2 #include #endif #include #include #include #include namespace snappy { using internal::COPY_1_BYTE_OFFSET; using internal::COPY_2_BYTE_OFFSET; using internal::LITERAL; using internal::char_table; using internal::kMaximumTagLength; // Any hash function will produce a valid compressed bitstream, but a good // hash function reduces the number of collisions and thus yields better // compression for compressible input, and more speed for incompressible // input. Of course, it doesn't hurt if the hash function is reasonably fast // either, as it gets called a lot. static inline uint32 HashBytes(uint32 bytes, int shift) { uint32 kMul = 0x1e35a7bd; return (bytes * kMul) >> shift; } static inline uint32 Hash(const char* p, int shift) { return HashBytes(UNALIGNED_LOAD32(p), shift); } size_t MaxCompressedLength(size_t source_len) { // Compressed data can be defined as: // compressed := item* literal* // item := literal* copy // // The trailing literal sequence has a space blowup of at most 62/60 // since a literal of length 60 needs one tag byte + one extra byte // for length information. // // Item blowup is trickier to measure. Suppose the "copy" op copies // 4 bytes of data. Because of a special check in the encoding code, // we produce a 4-byte copy only if the offset is < 65536. Therefore // the copy op takes 3 bytes to encode, and this type of item leads // to at most the 62/60 blowup for representing literals. // // Suppose the "copy" op copies 5 bytes of data. If the offset is big // enough, it will take 5 bytes to encode the copy op. Therefore the // worst case here is a one-byte literal followed by a five-byte copy. // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. // // This last factor dominates the blowup, so the final estimate is: return 32 + source_len + source_len/6; } namespace { void UnalignedCopy64(const void* src, void* dst) { char tmp[8]; memcpy(tmp, src, 8); memcpy(dst, tmp, 8); } void UnalignedCopy128(const void* src, void* dst) { // TODO(alkis): Remove this when we upgrade to a recent compiler that emits // SSE2 moves for memcpy(dst, src, 16). #if SNAPPY_HAVE_SSE2 __m128i x = _mm_loadu_si128(static_cast(src)); _mm_storeu_si128(static_cast<__m128i*>(dst), x); #else char tmp[16]; memcpy(tmp, src, 16); memcpy(dst, tmp, 16); #endif } // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used // for handling COPY operations where the input and output regions may overlap. // For example, suppose: // src == "ab" // op == src + 2 // op_limit == op + 20 // After IncrementalCopySlow(src, op, op_limit), the result will have eleven // copies of "ab" // ababababababababababab // Note that this does not match the semantics of either memcpy() or memmove(). inline char* IncrementalCopySlow(const char* src, char* op, char* const op_limit) { while (op < op_limit) { *op++ = *src++; } return op_limit; } // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than // IncrementalCopySlow. buf_limit is the address past the end of the writable // region of the buffer. inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, char* const buf_limit) { // Terminology: // // slop = buf_limit - op // pat = op - src // len = limit - op assert(src < op); assert(op_limit <= buf_limit); // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that // to optimize this function but we have to also handle these cases in case // the input does not satisfy these conditions. size_t pattern_size = op - src; // The cases are split into different branches to allow the branch predictor, // FDO, and static prediction hints to work better. For each input we list the // ratio of invocations that match each condition. // // input slop < 16 pat < 8 len > 16 // ------------------------------------------ // html|html4|cp 0% 1.01% 27.73% // urls 0% 0.88% 14.79% // jpg 0% 64.29% 7.14% // pdf 0% 2.56% 58.06% // txt[1-4] 0% 0.23% 0.97% // pb 0% 0.96% 13.88% // bin 0.01% 22.27% 41.17% // // It is very rare that we don't have enough slop for doing block copies. It // is also rare that we need to expand a pattern. Small patterns are common // for incompressible formats and for those we are plenty fast already. // Lengths are normally not greater than 16 but they vary depending on the // input. In general if we always predict len <= 16 it would be an ok // prediction. // // In order to be fast we want a pattern >= 8 bytes and an unrolled loop // copying 2x 8 bytes at a time. // Handle the uncommon case where pattern is less than 8 bytes. if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) { // Expand pattern to at least 8 bytes. The worse case scenario in terms of // buffer usage is when the pattern is size 3. ^ is the original position // of op. x are irrelevant bytes copied by the last UnalignedCopy64. // // abc // abcabcxxxxx // abcabcabcabcxxxxx // ^ // The last x is 14 bytes after ^. if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 14)) { while (pattern_size < 8) { UnalignedCopy64(src, op); op += pattern_size; pattern_size *= 2; } if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; } else { return IncrementalCopySlow(src, op, op_limit); } } assert(pattern_size >= 8); // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe // because expanding the pattern to at least 8 bytes guarantees that // op - src >= 8. while (op <= buf_limit - 16) { UnalignedCopy64(src, op); UnalignedCopy64(src + 8, op + 8); src += 16; op += 16; if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; } // We only take this branch if we didn't have enough slop and we can do a // single 8 byte copy. if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { UnalignedCopy64(src, op); src += 8; op += 8; } return IncrementalCopySlow(src, op, op_limit); } } // namespace static inline char* EmitLiteral(char* op, const char* literal, int len, bool allow_fast_path) { // The vast majority of copies are below 16 bytes, for which a // call to memcpy is overkill. This fast path can sometimes // copy up to 15 bytes too much, but that is okay in the // main loop, since we have a bit to go on for both sides: // // - The input will always have kInputMarginBytes = 15 extra // available bytes, as long as we're in the main loop, and // if not, allow_fast_path = false. // - The output will always have 32 spare bytes (see // MaxCompressedLength). assert(len > 0); // Zero-length literals are disallowed int n = len - 1; if (allow_fast_path && len <= 16) { // Fits in tag byte *op++ = LITERAL | (n << 2); UnalignedCopy128(literal, op); return op + len; } if (n < 60) { // Fits in tag byte *op++ = LITERAL | (n << 2); } else { // Encode in upcoming bytes char* base = op; int count = 0; op++; while (n > 0) { *op++ = n & 0xff; n >>= 8; count++; } assert(count >= 1); assert(count <= 4); *base = LITERAL | ((59+count) << 2); } memcpy(op, literal, len); return op + len; } static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len, bool len_less_than_12) { assert(len <= 64); assert(len >= 4); assert(offset < 65536); assert(len_less_than_12 == (len < 12)); if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) { // offset fits in 11 bits. The 3 highest go in the top of the first byte, // and the rest go in the second byte. *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0); *op++ = offset & 0xff; } else { // Write 4 bytes, though we only care about 3 of them. The output buffer // is required to have some slack, so the extra byte won't overrun it. uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); LittleEndian::Store32(op, u); op += 3; } return op; } static inline char* EmitCopy(char* op, size_t offset, size_t len, bool len_less_than_12) { assert(len_less_than_12 == (len < 12)); if (len_less_than_12) { return EmitCopyAtMost64(op, offset, len, true); } else { // A special case for len <= 64 might help, but so far measurements suggest // it's in the noise. // Emit 64 byte copies but make sure to keep at least four bytes reserved. while (SNAPPY_PREDICT_FALSE(len >= 68)) { op = EmitCopyAtMost64(op, offset, 64, false); len -= 64; } // One or two copies will now finish the job. if (len > 64) { op = EmitCopyAtMost64(op, offset, 60, false); len -= 60; } // Emit remainder. op = EmitCopyAtMost64(op, offset, len, len < 12); return op; } } bool GetUncompressedLength(const char* start, size_t n, size_t* result) { uint32 v = 0; const char* limit = start + n; if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { *result = v; return true; } else { return false; } } namespace internal { uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) { // Use smaller hash table when input.size() is smaller, since we // fill the table, incurring O(hash table size) overhead for // compression, and if the input is short, we won't need that // many hash table entries anyway. assert(kMaxHashTableSize >= 256); size_t htsize = 256; while (htsize < kMaxHashTableSize && htsize < input_size) { htsize <<= 1; } uint16* table; if (htsize <= ARRAYSIZE(small_table_)) { table = small_table_; } else { if (large_table_ == NULL) { large_table_ = new uint16[kMaxHashTableSize]; } table = large_table_; } *table_size = htsize; memset(table, 0, htsize * sizeof(*table)); return table; } } // end namespace internal // For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will // equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have // empirically found that overlapping loads such as // UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) // are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. // // We have different versions for 64- and 32-bit; ideally we would avoid the // two functions and just inline the UNALIGNED_LOAD64 call into // GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever // enough to avoid loading the value multiple times then. For 64-bit, the load // is done when GetEightBytesAt() is called, whereas for 32-bit, the load is // done at GetUint32AtOffset() time. #ifdef ARCH_K8 typedef uint64 EightBytesReference; static inline EightBytesReference GetEightBytesAt(const char* ptr) { return UNALIGNED_LOAD64(ptr); } static inline uint32 GetUint32AtOffset(uint64 v, int offset) { assert(offset >= 0); assert(offset <= 4); return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); } #else typedef const char* EightBytesReference; static inline EightBytesReference GetEightBytesAt(const char* ptr) { return ptr; } static inline uint32 GetUint32AtOffset(const char* v, int offset) { assert(offset >= 0); assert(offset <= 4); return UNALIGNED_LOAD32(v + offset); } #endif // Flat array compression that does not emit the "uncompressed length" // prefix. Compresses "input" string to the "*op" buffer. // // REQUIRES: "input" is at most "kBlockSize" bytes long. // REQUIRES: "op" points to an array of memory that is at least // "MaxCompressedLength(input.size())" in size. // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. // REQUIRES: "table_size" is a power of two // // Returns an "end" pointer into "op" buffer. // "end - op" is the compressed size of "input". namespace internal { char* CompressFragment(const char* input, size_t input_size, char* op, uint16* table, const int table_size) { // "ip" is the input pointer, and "op" is the output pointer. const char* ip = input; assert(input_size <= kBlockSize); assert((table_size & (table_size - 1)) == 0); // table must be power of two const int shift = 32 - Bits::Log2Floor(table_size); assert(static_cast(kuint32max >> shift) == table_size - 1); const char* ip_end = input + input_size; const char* base_ip = ip; // Bytes in [next_emit, ip) will be emitted as literal bytes. Or // [next_emit, ip_end) after the main loop. const char* next_emit = ip; const size_t kInputMarginBytes = 15; if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { const char* ip_limit = input + input_size - kInputMarginBytes; for (uint32 next_hash = Hash(++ip, shift); ; ) { assert(next_emit < ip); // The body of this loop calls EmitLiteral once and then EmitCopy one or // more times. (The exception is that when we're close to exhausting // the input we goto emit_remainder.) // // In the first iteration of this loop we're just starting, so // there's nothing to copy, so calling EmitLiteral once is // necessary. And we only start a new iteration when the // current iteration has determined that a call to EmitLiteral will // precede the next call to EmitCopy (if any). // // Step 1: Scan forward in the input looking for a 4-byte-long match. // If we get close to exhausting the input then goto emit_remainder. // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match is // found, immediately go back to looking at every byte. This is a small // loss (~5% performance, ~0.1% density) for compressible data due to more // bookkeeping, but for non-compressible data (such as JPEG) it's a huge // win since the compressor quickly "realizes" the data is incompressible // and doesn't bother looking for matches everywhere. // // The "skip" variable keeps track of how many bytes there are since the // last match; dividing it by 32 (ie. right-shifting by five) gives the // number of bytes to move ahead for each iteration. uint32 skip = 32; const char* next_ip = ip; const char* candidate; do { ip = next_ip; uint32 hash = next_hash; assert(hash == Hash(ip, shift)); uint32 bytes_between_hash_lookups = skip >> 5; skip += bytes_between_hash_lookups; next_ip = ip + bytes_between_hash_lookups; if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { goto emit_remainder; } next_hash = Hash(next_ip, shift); candidate = base_ip + table[hash]; assert(candidate >= base_ip); assert(candidate < ip); table[hash] = ip - base_ip; } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) != UNALIGNED_LOAD32(candidate))); // Step 2: A 4-byte match has been found. We'll later see if more // than 4 bytes match. But, prior to the match, input // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." assert(next_emit + 16 <= ip_end); op = EmitLiteral(op, next_emit, ip - next_emit, true); // Step 3: Call EmitCopy, and then see if another EmitCopy could // be our next move. Repeat until we find no match for the // input immediately after what was consumed by the last EmitCopy call. // // If we exit this loop normally then we need to call EmitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can exit // this loop via goto if we get close to exhausting the input. EightBytesReference input_bytes; uint32 candidate_bytes = 0; do { // We have a 4-byte match at ip, and no need to emit any // "literal bytes" prior to ip. const char* base = ip; std::pair p = FindMatchLength(candidate + 4, ip + 4, ip_end); size_t matched = 4 + p.first; ip += matched; size_t offset = base - candidate; assert(0 == memcmp(base, candidate, matched)); op = EmitCopy(op, offset, matched, p.second); next_emit = ip; if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } // We are now looking for a 4-byte match again. We read // table[Hash(ip, shift)] for that. To improve compression, // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)]. input_bytes = GetEightBytesAt(ip - 1); uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); table[prev_hash] = ip - base_ip - 1; uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); candidate = base_ip + table[cur_hash]; candidate_bytes = UNALIGNED_LOAD32(candidate); table[cur_hash] = ip - base_ip; } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); ++ip; } } emit_remainder: // Emit the remaining bytes as a literal if (next_emit < ip_end) { op = EmitLiteral(op, next_emit, ip_end - next_emit, false); } return op; } } // end namespace internal // Called back at avery compression call to trace parameters and sizes. static inline void Report(const char *algorithm, size_t compressed_size, size_t uncompressed_size) {} // Signature of output types needed by decompression code. // The decompression code is templatized on a type that obeys this // signature so that we do not pay virtual function call overhead in // the middle of a tight decompression loop. // // class DecompressionWriter { // public: // // Called before decompression // void SetExpectedLength(size_t length); // // // Called after decompression // bool CheckLength() const; // // // Called repeatedly during decompression // bool Append(const char* ip, size_t length); // bool AppendFromSelf(uint32 offset, size_t length); // // // The rules for how TryFastAppend differs from Append are somewhat // // convoluted: // // // // - TryFastAppend is allowed to decline (return false) at any // // time, for any reason -- just "return false" would be // // a perfectly legal implementation of TryFastAppend. // // The intention is for TryFastAppend to allow a fast path // // in the common case of a small append. // // - TryFastAppend is allowed to read up to bytes // // from the input buffer, whereas Append is allowed to read // // . However, if it returns true, it must leave // // at least five (kMaximumTagLength) bytes in the input buffer // // afterwards, so that there is always enough space to read the // // next tag without checking for a refill. // // - TryFastAppend must always return decline (return false) // // if is 61 or more, as in this case the literal length is not // // decoded fully. In practice, this should not be a big problem, // // as it is unlikely that one would implement a fast path accepting // // this much data. // // // bool TryFastAppend(const char* ip, size_t available, size_t length); // }; namespace internal { // Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits static const uint32 wordmask[] = { 0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu }; } // end namespace internal // Helper class for decompression class SnappyDecompressor { private: Source* reader_; // Underlying source of bytes to decompress const char* ip_; // Points to next buffered byte const char* ip_limit_; // Points just past buffered bytes uint32 peeked_; // Bytes peeked from reader (need to skip) bool eof_; // Hit end of input without an error? char scratch_[kMaximumTagLength]; // See RefillTag(). // Ensure that all of the tag metadata for the next tag is available // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even // if (ip_limit_ - ip_ < 5). // // Returns true on success, false on error or end of input. bool RefillTag(); public: explicit SnappyDecompressor(Source* reader) : reader_(reader), ip_(NULL), ip_limit_(NULL), peeked_(0), eof_(false) { } ~SnappyDecompressor() { // Advance past any bytes we peeked at from the reader reader_->Skip(peeked_); } // Returns true iff we have hit the end of the input without an error. bool eof() const { return eof_; } // Read the uncompressed length stored at the start of the compressed data. // On succcess, stores the length in *result and returns true. // On failure, returns false. bool ReadUncompressedLength(uint32* result) { assert(ip_ == NULL); // Must not have read anything yet // Length is encoded in 1..5 bytes *result = 0; uint32 shift = 0; while (true) { if (shift >= 32) return false; size_t n; const char* ip = reader_->Peek(&n); if (n == 0) return false; const unsigned char c = *(reinterpret_cast(ip)); reader_->Skip(1); uint32 val = c & 0x7f; if (((val << shift) >> shift) != val) return false; *result |= val << shift; if (c < 128) { break; } shift += 7; } return true; } // Process the next item found in the input. // Returns true if successful, false on error or end of input. template void DecompressAllTags(Writer* writer) { const char* ip = ip_; // For position-independent executables, accessing global arrays can be // slow. Move wordmask array onto the stack to mitigate this. uint32 wordmask[sizeof(internal::wordmask)/sizeof(uint32)]; // Do not use memcpy to copy internal::wordmask to // wordmask. LLVM converts stack arrays to global arrays if it detects // const stack arrays and this hurts the performance of position // independent code. This change is temporary and can be reverted when // https://reviews.llvm.org/D30759 is approved. wordmask[0] = internal::wordmask[0]; wordmask[1] = internal::wordmask[1]; wordmask[2] = internal::wordmask[2]; wordmask[3] = internal::wordmask[3]; wordmask[4] = internal::wordmask[4]; // We could have put this refill fragment only at the beginning of the loop. // However, duplicating it at the end of each branch gives the compiler more // scope to optimize the expression based on the local // context, which overall increases speed. #define MAYBE_REFILL() \ if (ip_limit_ - ip < kMaximumTagLength) { \ ip_ = ip; \ if (!RefillTag()) return; \ ip = ip_; \ } MAYBE_REFILL(); // Add loop alignment directive. Without this directive, we observed // significant performance degradation on several intel architectures // in snappy benchmark built with LLVM. The degradation was caused by // increased branch miss prediction. #if defined(__clang__) && defined(__x86_64__) asm volatile (".p2align 5"); #endif for ( ;; ) { const unsigned char c = *(reinterpret_cast(ip++)); // Ratio of iterations that have LITERAL vs non-LITERAL for different // inputs. // // input LITERAL NON_LITERAL // ----------------------------------- // html|html4|cp 23% 77% // urls 36% 64% // jpg 47% 53% // pdf 19% 81% // txt[1-4] 25% 75% // pb 24% 76% // bin 24% 76% if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { size_t literal_length = (c >> 2) + 1u; if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { assert(literal_length < 61); ip += literal_length; // NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend() // will not return true unless there's already at least five spare // bytes in addition to the literal. continue; } if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { // Long literal. const size_t literal_length_length = literal_length - 60; literal_length = (LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1; ip += literal_length_length; } size_t avail = ip_limit_ - ip; while (avail < literal_length) { if (!writer->Append(ip, avail)) return; literal_length -= avail; reader_->Skip(peeked_); size_t n; ip = reader_->Peek(&n); avail = n; peeked_ = avail; if (avail == 0) return; // Premature end of input ip_limit_ = ip + avail; } if (!writer->Append(ip, literal_length)) { return; } ip += literal_length; MAYBE_REFILL(); } else { const size_t entry = char_table[c]; const size_t trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11]; const size_t length = entry & 0xff; ip += entry >> 11; // copy_offset/256 is encoded in bits 8..10. By just fetching // those bits, we get copy_offset (since the bit-field starts at // bit 8). const size_t copy_offset = entry & 0x700; if (!writer->AppendFromSelf(copy_offset + trailer, length)) { return; } MAYBE_REFILL(); } } #undef MAYBE_REFILL } }; bool SnappyDecompressor::RefillTag() { const char* ip = ip_; if (ip == ip_limit_) { // Fetch a new fragment from the reader reader_->Skip(peeked_); // All peeked bytes are used up size_t n; ip = reader_->Peek(&n); peeked_ = n; eof_ = (n == 0); if (eof_) return false; ip_limit_ = ip + n; } // Read the tag character assert(ip < ip_limit_); const unsigned char c = *(reinterpret_cast(ip)); const uint32 entry = char_table[c]; const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c' assert(needed <= sizeof(scratch_)); // Read more bytes from reader if needed uint32 nbuf = ip_limit_ - ip; if (nbuf < needed) { // Stitch together bytes from ip and reader to form the word // contents. We store the needed bytes in "scratch_". They // will be consumed immediately by the caller since we do not // read more than we need. memmove(scratch_, ip, nbuf); reader_->Skip(peeked_); // All peeked bytes are used up peeked_ = 0; while (nbuf < needed) { size_t length; const char* src = reader_->Peek(&length); if (length == 0) return false; uint32 to_add = std::min(needed - nbuf, length); memcpy(scratch_ + nbuf, src, to_add); nbuf += to_add; reader_->Skip(to_add); } assert(nbuf == needed); ip_ = scratch_; ip_limit_ = scratch_ + needed; } else if (nbuf < kMaximumTagLength) { // Have enough bytes, but move into scratch_ so that we do not // read past end of input memmove(scratch_, ip, nbuf); reader_->Skip(peeked_); // All peeked bytes are used up peeked_ = 0; ip_ = scratch_; ip_limit_ = scratch_ + nbuf; } else { // Pass pointer to buffer returned by reader_. ip_ = ip; } return true; } template static bool InternalUncompress(Source* r, Writer* writer) { // Read the uncompressed length from the front of the compressed input SnappyDecompressor decompressor(r); uint32 uncompressed_len = 0; if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; return InternalUncompressAllTags(&decompressor, writer, r->Available(), uncompressed_len); } template static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, Writer* writer, uint32 compressed_len, uint32 uncompressed_len) { Report("snappy_uncompress", compressed_len, uncompressed_len); writer->SetExpectedLength(uncompressed_len); // Process the entire input decompressor->DecompressAllTags(writer); writer->Flush(); return (decompressor->eof() && writer->CheckLength()); } bool GetUncompressedLength(Source* source, uint32* result) { SnappyDecompressor decompressor(source); return decompressor.ReadUncompressedLength(result); } size_t Compress(Source* reader, Sink* writer) { size_t written = 0; size_t N = reader->Available(); const size_t uncompressed_size = N; char ulength[Varint::kMax32]; char* p = Varint::Encode32(ulength, N); writer->Append(ulength, p-ulength); written += (p - ulength); internal::WorkingMemory wmem; char* scratch = NULL; char* scratch_output = NULL; while (N > 0) { // Get next block to compress (without copying if possible) size_t fragment_size; const char* fragment = reader->Peek(&fragment_size); assert(fragment_size != 0); // premature end of input const size_t num_to_read = std::min(N, kBlockSize); size_t bytes_read = fragment_size; size_t pending_advance = 0; if (bytes_read >= num_to_read) { // Buffer returned by reader is large enough pending_advance = num_to_read; fragment_size = num_to_read; } else { // Read into scratch buffer if (scratch == NULL) { // If this is the last iteration, we want to allocate N bytes // of space, otherwise the max possible kBlockSize space. // num_to_read contains exactly the correct value scratch = new char[num_to_read]; } memcpy(scratch, fragment, bytes_read); reader->Skip(bytes_read); while (bytes_read < num_to_read) { fragment = reader->Peek(&fragment_size); size_t n = std::min(fragment_size, num_to_read - bytes_read); memcpy(scratch + bytes_read, fragment, n); bytes_read += n; reader->Skip(n); } assert(bytes_read == num_to_read); fragment = scratch; fragment_size = num_to_read; } assert(fragment_size == num_to_read); // Get encoding table for compression int table_size; uint16* table = wmem.GetHashTable(num_to_read, &table_size); // Compress input_fragment and append to dest const int max_output = MaxCompressedLength(num_to_read); // Need a scratch buffer for the output, in case the byte sink doesn't // have room for us directly. if (scratch_output == NULL) { scratch_output = new char[max_output]; } else { // Since we encode kBlockSize regions followed by a region // which is <= kBlockSize in length, a previously allocated // scratch_output[] region is big enough for this iteration. } char* dest = writer->GetAppendBuffer(max_output, scratch_output); char* end = internal::CompressFragment(fragment, fragment_size, dest, table, table_size); writer->Append(dest, end - dest); written += (end - dest); N -= num_to_read; reader->Skip(pending_advance); } Report("snappy_compress", written, uncompressed_size); delete[] scratch; delete[] scratch_output; return written; } // ----------------------------------------------------------------------- // IOVec interfaces // ----------------------------------------------------------------------- // A type that writes to an iovec. // Note that this is not a "ByteSink", but a type that matches the // Writer template argument to SnappyDecompressor::DecompressAllTags(). class SnappyIOVecWriter { private: const struct iovec* output_iov_; const size_t output_iov_count_; // We are currently writing into output_iov_[curr_iov_index_]. size_t curr_iov_index_; // Bytes written to output_iov_[curr_iov_index_] so far. size_t curr_iov_written_; // Total bytes decompressed into output_iov_ so far. size_t total_written_; // Maximum number of bytes that will be decompressed into output_iov_. size_t output_limit_; inline char* GetIOVecPointer(size_t index, size_t offset) { return reinterpret_cast(output_iov_[index].iov_base) + offset; } public: // Does not take ownership of iov. iov must be valid during the // entire lifetime of the SnappyIOVecWriter. inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) : output_iov_(iov), output_iov_count_(iov_count), curr_iov_index_(0), curr_iov_written_(0), total_written_(0), output_limit_(-1) { } inline void SetExpectedLength(size_t len) { output_limit_ = len; } inline bool CheckLength() const { return total_written_ == output_limit_; } inline bool Append(const char* ip, size_t len) { if (total_written_ + len > output_limit_) { return false; } while (len > 0) { assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len); if (curr_iov_written_ >= output_iov_[curr_iov_index_].iov_len) { // This iovec is full. Go to the next one. if (curr_iov_index_ + 1 >= output_iov_count_) { return false; } curr_iov_written_ = 0; ++curr_iov_index_; } const size_t to_write = std::min( len, output_iov_[curr_iov_index_].iov_len - curr_iov_written_); memcpy(GetIOVecPointer(curr_iov_index_, curr_iov_written_), ip, to_write); curr_iov_written_ += to_write; total_written_ += to_write; ip += to_write; len -= to_write; } return true; } inline bool TryFastAppend(const char* ip, size_t available, size_t len) { const size_t space_left = output_limit_ - total_written_; if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && output_iov_[curr_iov_index_].iov_len - curr_iov_written_ >= 16) { // Fast path, used for the majority (about 95%) of invocations. char* ptr = GetIOVecPointer(curr_iov_index_, curr_iov_written_); UnalignedCopy128(ip, ptr); curr_iov_written_ += len; total_written_ += len; return true; } return false; } inline bool AppendFromSelf(size_t offset, size_t len) { if (offset > total_written_ || offset == 0) { return false; } const size_t space_left = output_limit_ - total_written_; if (len > space_left) { return false; } // Locate the iovec from which we need to start the copy. size_t from_iov_index = curr_iov_index_; size_t from_iov_offset = curr_iov_written_; while (offset > 0) { if (from_iov_offset >= offset) { from_iov_offset -= offset; break; } offset -= from_iov_offset; assert(from_iov_index > 0); --from_iov_index; from_iov_offset = output_iov_[from_iov_index].iov_len; } // Copy bytes starting from the iovec pointed to by from_iov_index to // the current iovec. while (len > 0) { assert(from_iov_index <= curr_iov_index_); if (from_iov_index != curr_iov_index_) { const size_t to_copy = std::min( output_iov_[from_iov_index].iov_len - from_iov_offset, len); Append(GetIOVecPointer(from_iov_index, from_iov_offset), to_copy); len -= to_copy; if (len > 0) { ++from_iov_index; from_iov_offset = 0; } } else { assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len); size_t to_copy = std::min(output_iov_[curr_iov_index_].iov_len - curr_iov_written_, len); if (to_copy == 0) { // This iovec is full. Go to the next one. if (curr_iov_index_ + 1 >= output_iov_count_) { return false; } ++curr_iov_index_; curr_iov_written_ = 0; continue; } if (to_copy > len) { to_copy = len; } IncrementalCopySlow( GetIOVecPointer(from_iov_index, from_iov_offset), GetIOVecPointer(curr_iov_index_, curr_iov_written_), GetIOVecPointer(curr_iov_index_, curr_iov_written_) + to_copy); curr_iov_written_ += to_copy; from_iov_offset += to_copy; total_written_ += to_copy; len -= to_copy; } } return true; } inline void Flush() {} }; bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, const struct iovec* iov, size_t iov_cnt) { ByteArraySource reader(compressed, compressed_length); return RawUncompressToIOVec(&reader, iov, iov_cnt); } bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, size_t iov_cnt) { SnappyIOVecWriter output(iov, iov_cnt); return InternalUncompress(compressed, &output); } // ----------------------------------------------------------------------- // Flat array interfaces // ----------------------------------------------------------------------- // A type that writes to a flat array. // Note that this is not a "ByteSink", but a type that matches the // Writer template argument to SnappyDecompressor::DecompressAllTags(). class SnappyArrayWriter { private: char* base_; char* op_; char* op_limit_; public: inline explicit SnappyArrayWriter(char* dst) : base_(dst), op_(dst), op_limit_(dst) { } inline void SetExpectedLength(size_t len) { op_limit_ = op_ + len; } inline bool CheckLength() const { return op_ == op_limit_; } inline bool Append(const char* ip, size_t len) { char* op = op_; const size_t space_left = op_limit_ - op; if (space_left < len) { return false; } memcpy(op, ip, len); op_ = op + len; return true; } inline bool TryFastAppend(const char* ip, size_t available, size_t len) { char* op = op_; const size_t space_left = op_limit_ - op; if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { // Fast path, used for the majority (about 95%) of invocations. UnalignedCopy128(ip, op); op_ = op + len; return true; } else { return false; } } inline bool AppendFromSelf(size_t offset, size_t len) { char* const op_end = op_ + len; // Check if we try to append from before the start of the buffer. // Normally this would just be a check for "produced < offset", // but "produced <= offset - 1u" is equivalent for every case // except the one where offset==0, where the right side will wrap around // to a very big number. This is convenient, as offset==0 is another // invalid case that we also want to catch, so that we do not go // into an infinite loop. if (Produced() <= offset - 1u || op_end > op_limit_) return false; op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_); return true; } inline size_t Produced() const { assert(op_ >= base_); return op_ - base_; } inline void Flush() {} }; bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { ByteArraySource reader(compressed, n); return RawUncompress(&reader, uncompressed); } bool RawUncompress(Source* compressed, char* uncompressed) { SnappyArrayWriter output(uncompressed); return InternalUncompress(compressed, &output); } bool Uncompress(const char* compressed, size_t n, string* uncompressed) { size_t ulength; if (!GetUncompressedLength(compressed, n, &ulength)) { return false; } // On 32-bit builds: max_size() < kuint32max. Check for that instead // of crashing (e.g., consider externally specified compressed data). if (ulength > uncompressed->max_size()) { return false; } STLStringResizeUninitialized(uncompressed, ulength); return RawUncompress(compressed, n, string_as_array(uncompressed)); } // A Writer that drops everything on the floor and just does validation class SnappyDecompressionValidator { private: size_t expected_; size_t produced_; public: inline SnappyDecompressionValidator() : expected_(0), produced_(0) { } inline void SetExpectedLength(size_t len) { expected_ = len; } inline bool CheckLength() const { return expected_ == produced_; } inline bool Append(const char* ip, size_t len) { produced_ += len; return produced_ <= expected_; } inline bool TryFastAppend(const char* ip, size_t available, size_t length) { return false; } inline bool AppendFromSelf(size_t offset, size_t len) { // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. if (produced_ <= offset - 1u) return false; produced_ += len; return produced_ <= expected_; } inline void Flush() {} }; bool IsValidCompressedBuffer(const char* compressed, size_t n) { ByteArraySource reader(compressed, n); SnappyDecompressionValidator writer; return InternalUncompress(&reader, &writer); } bool IsValidCompressed(Source* compressed) { SnappyDecompressionValidator writer; return InternalUncompress(compressed, &writer); } void RawCompress(const char* input, size_t input_length, char* compressed, size_t* compressed_length) { ByteArraySource reader(input, input_length); UncheckedByteArraySink writer(compressed); Compress(&reader, &writer); // Compute how many bytes were added *compressed_length = (writer.CurrentDestination() - compressed); } size_t Compress(const char* input, size_t input_length, string* compressed) { // Pre-grow the buffer to the max length of the compressed output STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); size_t compressed_length; RawCompress(input, input_length, string_as_array(compressed), &compressed_length); compressed->resize(compressed_length); return compressed_length; } // ----------------------------------------------------------------------- // Sink interface // ----------------------------------------------------------------------- // A type that decompresses into a Sink. The template parameter // Allocator must export one method "char* Allocate(int size);", which // allocates a buffer of "size" and appends that to the destination. template class SnappyScatteredWriter { Allocator allocator_; // We need random access into the data generated so far. Therefore // we keep track of all of the generated data as an array of blocks. // All of the blocks except the last have length kBlockSize. std::vector blocks_; size_t expected_; // Total size of all fully generated blocks so far size_t full_size_; // Pointer into current output block char* op_base_; // Base of output block char* op_ptr_; // Pointer to next unfilled byte in block char* op_limit_; // Pointer just past block inline size_t Size() const { return full_size_ + (op_ptr_ - op_base_); } bool SlowAppend(const char* ip, size_t len); bool SlowAppendFromSelf(size_t offset, size_t len); public: inline explicit SnappyScatteredWriter(const Allocator& allocator) : allocator_(allocator), full_size_(0), op_base_(NULL), op_ptr_(NULL), op_limit_(NULL) { } inline void SetExpectedLength(size_t len) { assert(blocks_.empty()); expected_ = len; } inline bool CheckLength() const { return Size() == expected_; } // Return the number of bytes actually uncompressed so far inline size_t Produced() const { return Size(); } inline bool Append(const char* ip, size_t len) { size_t avail = op_limit_ - op_ptr_; if (len <= avail) { // Fast path memcpy(op_ptr_, ip, len); op_ptr_ += len; return true; } else { return SlowAppend(ip, len); } } inline bool TryFastAppend(const char* ip, size_t available, size_t length) { char* op = op_ptr_; const int space_left = op_limit_ - op; if (length <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { // Fast path, used for the majority (about 95%) of invocations. UnalignedCopy128(ip, op); op_ptr_ = op + length; return true; } else { return false; } } inline bool AppendFromSelf(size_t offset, size_t len) { char* const op_end = op_ptr_ + len; // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ && op_end <= op_limit_)) { // Fast path: src and dst in current block. op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_); return true; } return SlowAppendFromSelf(offset, len); } // Called at the end of the decompress. We ask the allocator // write all blocks to the sink. inline void Flush() { allocator_.Flush(Produced()); } }; template bool SnappyScatteredWriter::SlowAppend(const char* ip, size_t len) { size_t avail = op_limit_ - op_ptr_; while (len > avail) { // Completely fill this block memcpy(op_ptr_, ip, avail); op_ptr_ += avail; assert(op_limit_ - op_ptr_ == 0); full_size_ += (op_ptr_ - op_base_); len -= avail; ip += avail; // Bounds check if (full_size_ + len > expected_) { return false; } // Make new block size_t bsize = std::min(kBlockSize, expected_ - full_size_); op_base_ = allocator_.Allocate(bsize); op_ptr_ = op_base_; op_limit_ = op_base_ + bsize; blocks_.push_back(op_base_); avail = bsize; } memcpy(op_ptr_, ip, len); op_ptr_ += len; return true; } template bool SnappyScatteredWriter::SlowAppendFromSelf(size_t offset, size_t len) { // Overflow check // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. const size_t cur = Size(); if (offset - 1u >= cur) return false; if (expected_ - cur < len) return false; // Currently we shouldn't ever hit this path because Compress() chops the // input into blocks and does not create cross-block copies. However, it is // nice if we do not rely on that, since we can get better compression if we // allow cross-block copies and thus might want to change the compressor in // the future. size_t src = cur - offset; while (len-- > 0) { char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)]; Append(&c, 1); src++; } return true; } class SnappySinkAllocator { public: explicit SnappySinkAllocator(Sink* dest): dest_(dest) {} ~SnappySinkAllocator() {} char* Allocate(int size) { Datablock block(new char[size], size); blocks_.push_back(block); return block.data; } // We flush only at the end, because the writer wants // random access to the blocks and once we hand the // block over to the sink, we can't access it anymore. // Also we don't write more than has been actually written // to the blocks. void Flush(size_t size) { size_t size_written = 0; size_t block_size; for (int i = 0; i < blocks_.size(); ++i) { block_size = std::min(blocks_[i].size, size - size_written); dest_->AppendAndTakeOwnership(blocks_[i].data, block_size, &SnappySinkAllocator::Deleter, NULL); size_written += block_size; } blocks_.clear(); } private: struct Datablock { char* data; size_t size; Datablock(char* p, size_t s) : data(p), size(s) {} }; static void Deleter(void* arg, const char* bytes, size_t size) { delete[] bytes; } Sink* dest_; std::vector blocks_; // Note: copying this object is allowed }; size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { SnappySinkAllocator allocator(uncompressed); SnappyScatteredWriter writer(allocator); InternalUncompress(compressed, &writer); return writer.Produced(); } bool Uncompress(Source* compressed, Sink* uncompressed) { // Read the uncompressed length from the front of the compressed input SnappyDecompressor decompressor(compressed); uint32 uncompressed_len = 0; if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { return false; } char c; size_t allocated_size; char* buf = uncompressed->GetAppendBufferVariable( 1, uncompressed_len, &c, 1, &allocated_size); const size_t compressed_len = compressed->Available(); // If we can get a flat buffer, then use it, otherwise do block by block // uncompression if (allocated_size >= uncompressed_len) { SnappyArrayWriter writer(buf); bool result = InternalUncompressAllTags(&decompressor, &writer, compressed_len, uncompressed_len); uncompressed->Append(buf, writer.Produced()); return result; } else { SnappySinkAllocator allocator(uncompressed); SnappyScatteredWriter writer(allocator); return InternalUncompressAllTags(&decompressor, &writer, compressed_len, uncompressed_len); } } } // end namespace snappy