# SwiftVec
[![Static Badge](https://img.shields.io/badge/GITHUB-LunaticWyrm467%2Fswift_vec-LunaticWyrm467%2Fswift_vec?style=for-the-badge&logo=github)](https://github.com/LunaticWyrm467/swift-vec)
[![Crates.io Version](https://img.shields.io/crates/v/swift-vec?style=for-the-badge&logo=rust)](https://crates.io/crates/swift-vec)
[![Static Badge](https://img.shields.io/badge/DOCS.RS-swift_vec-66c2a5?style=for-the-badge&logo=docs.rs)](https://docs.rs/swift-vec)
![Crates.io License](https://img.shields.io/crates/l/swift-vec?color=green&style=for-the-badge)
**SwiftVec** is an easy-to-use, intuitive vector maths library with a ton
of functionality for game development, physics simulations, and other potential use cases.
**⚠️WARNING⚠️**
This crate is in its infancy! 4D vectors are missing, along with other planned functionality.
Beware of bugs!
## Getting Started!
Simply either run `cargo add swift_vec` at the terminal directed towards the directory of your project,
or add `swift_vec = X.X` to your `cargo.toml` file.
To show off some basic functionality of what this crate allows for;
```rust
use core::f32::consts::TAU;
use swift_vec::prelude::*;
use swift_vec::vector::{ Vec2, Vec3, Mat3, Axis2, SignedAxis3 };
use Axis2::*; // It is recommended to import from the Axis enums if you're going to be
// indexing a lot.
fn main() {
/*
* Vectors!
*/
// Supports tuple destructuring and field indexing.
let Vec2(x, y): Vec2 = Vec2(1, 0);
match Vec2(x, y) {
Vec2( 0, 1) => println!("Up"),
Vec2( 0, -1) => println!("Down"),
Vec2(-1, 0) => println!("Left"),
Vec2( 1, 0) => println!("Right"),
_ => println!("Other")
}
let mut test_vec: Vec2 = Vec2(1, 0);
let argmax_axis: Axis2 = test_vec.argmax();
let argmax_val: i32 = test_vec[argmax_axis];
test_vec[X] = 2; // You could always use tuple fields (`test_vec.0`) but this is more readable.
test_vec[Y] = 3;
assert_eq!(argmax_axis, X);
assert_eq!(argmax_val, 1);
assert_eq!(test_vec, Vec2(2, 3));
// Vectors support all primitive numerical types and support multiple construction methods.
let vec_i32: Vec3 = 1.vec3();
let vec_u32: Vec3 = (1, 2, 3).vec3();
let vec_usize: Vec3 = (3, Vec2(2, 3)).vec3();
let vec_f64: Vec3 = (Vec2(5.0, 6.0), 4.0).vec3();
// Vectors can be cast to other types, and can be manipulated just like any other numerical data.
let avg: Vec3 = (vec_i32.cast().unwrap() + vec_u32.cast().unwrap() + vec_usize.cast().unwrap() + vec_f64.cast().unwrap()) / 4.0;
assert_eq!(avg, Vec3(2.5, 2.75, 2.75));
// Several operations are implemented, such as dot/cross products, magnitude/normalization, etc.
let dot: f64 = Vec3(5.0, 4.0, 3.0).dot(Vec3(1.0, 2.0, 3.0));
let mag: f64 = Vec3(3.0, 4.0, 5.0).magnitude();
assert_eq!(dot, 22.0);
assert_eq!(mag, 5.0 * 2.0f64.sqrt());
assert!(Vec3(3.0, 4.0, 5.0).normalized().magnitude().approx_eq(1.0));
// Interpolation is added to vector types.
let a: Vec2 = Vec2(1.0, 2.0);
let b: Vec2 = Vec2(3.0, 3.0);
let c: Vec2 = a.lerp(b, 0.5);
assert_eq!(c, Vec2(2.0, 2.5));
let a: Vec2 = 1.0.vec2();
let b: Vec2 = 2.0.vec2();
let pre_a: Vec2 = -5.0.vec2();
let post_b: Vec2 = 3.0.vec2();
let c_025: Vec2 = a.cubic_interpolate(b, pre_a, post_b, 0.25);
let c_050: Vec2 = a.cubic_interpolate(b, pre_a, post_b, 0.50);
let c_075: Vec2 = a.cubic_interpolate(b, pre_a, post_b, 0.75);
assert!(c_025.approx_eq(Vec2(1.601563, 1.601563)));
assert!(c_050.approx_eq(Vec2(1.8125, 1.8125 )));
assert!(c_075.approx_eq(Vec2(1.867188, 1.867188)));
/*
* Matrices are also supported!
*/
// Create a matrix from a scale.
let control: Mat3 = Mat3::new(
2, 0, 0,
0, 4, 0,
0, 0, 8
);
let scale: Vec3 = Vec3(2, 4, 8);
let mat: Mat3 = Mat3::from_scale(scale);
assert_eq!(mat, control);
// Rotate the matrix.
// You can use `rotated_free()` to specify a custom axis.
let mut mat: Mat3 = mat.cast().unwrap();
mat = mat.rotated(TAU / 2.0, SignedAxis3::YPos);
mat = mat.rotated(TAU / 4.0, SignedAxis3::XPos);
assert!(mat.get_scale().approx_eq(Vec3(2.0, 4.0, 8.0)));
// Matrix inversion is suppported.
let control: Mat3 = Mat3::new(
0.452055, 0.041096, -0.39726,
-0.054795, -0.09589, 0.260274,
-0.041096, 0.178082, -0.054795
);
let mat: Mat3 = Mat3::new(
3.0, 5.0, 2.0,
1.0, 3.0, 7.0,
1.0, 6.0, 3.0
);
assert!(mat.inverse().approx_eq(&control));
// So is normalization.
let mut mat: Mat3 = Mat3::IDENTITY.scaled(Vec3(3.0, 4.0, 6.0));
mat = mat.rotated(TAU, SignedAxis3::YPos);
mat = mat.rotated(TAU, SignedAxis3::XPos);
mat = mat.orthonormalized();
assert!(Vec3(
mat.x.length(), // You can also index Matrices by using `Axis3`.
mat.y.length(),
mat.z.length()
).approx_eq(1.0.vec3()));
// And a bunch of other stuff...
}
```
We also provide functionality for rectangles and their associated geometric functions;
```rust
use swift_vec::prelude::*;
use swift_vec::vector::{ Vec2, Axis2 };
use swift_vec::rect::{ Rect2, Side2 };
fn main() {
// Just like vectors, rectangles can be destructured and indexed.
let Rect2(position, dimensions): Rect2 = Rect2(Vec2(1, 1), Vec2(3, 6));
let rect: Rect2 = Rect2(position, dimensions);
let longest_axis: Axis2 = rect.longest_axis();
let longest_length: i32 = rect.longest_axis_length();
assert_eq!(longest_axis, Axis2::Y);
assert_eq!(longest_length, 6);
// There are checks in place for determining whether rectangles intersect, and to allow for the
// computation of their cross-section.
let rect_a: Rect2 = Rect2::from_offsets(-5.0, -5.0, 5.0, 5.0);
let rect_b: Rect2 = Rect2::from_components(-10.0, -10.0, 7.5, 7.5);
assert_eq!(rect_a.intersects(&rect_b, false), true); // `include_borders` is set to false - not that it matters here.
assert_eq!(rect_a.intersection(&rect_b).unwrap(), Rect2(Vec2(-5.0, -5.0), Vec2(2.5, 2.5)));
let smaller_rect: Rect2 = Rect2::unit();
let bigger_rect: Rect2 = Rect2(Vec2(-32, -32), Vec2(64, 64));
assert_eq!(bigger_rect.encompasses(&smaller_rect.cast()), true); // Casting is supported.
assert_eq!(smaller_rect.encompasses(&bigger_rect.cast()), false);
// Rectangles can be checked to see if they contain a point.
let platform: Rect2 = Rect2(Vec2(0, 0), Vec2(100, 100));
let point: Vec2 = Vec2(50, 50);
assert_eq!(platform.encompasses_point(point), true);
// Rectangles can be merged and their shape can be manipulated.
let rect_a: Rect2 = Rect2::from_components(-3, -3, 3, 3);
let rect_b: Rect2 = Rect2::from_components(3, 3, 3, 3);
let merged: Rect2 = rect_a.merge(&rect_b);
assert_eq!(merged, Rect2(Vec2(-3, -3), Vec2(9, 9)));
let base_rect: Rect2 = Rect2::unit();
let mod_rect: Rect2 = base_rect.grow_side(Side2::Top, 5);
assert_eq!(mod_rect, Rect2(Vec2(0, -5), Vec2(1, 6)));
}
```
## Features
- ℹ️ Simple yet intuitive syntax. No messy constructors!
- ➕ Standard vector arithmetic and operations.
- ✨ Matrix operation support!
- ⛛ Trigonometric functions and angle manipulation.
- ↗️ Standard vector operations such as `magnitude()`, `normalize()`, `dot()`, `cross()`, etc.
- 🪞 Reflection and refraction functions.
- 🌍 Geometric comparisons and operations such as `distance_to()`, `slide()`, etc.
- 🐌 Different interpolation methods such as `lerp()`, `bezier_sample()`, `cubic_interpolate()`, and `cubic_interpolate_in_time()`.
- 📚 Aliases for common functions, such as `length()` for `magnitude()`.