--- title: Chaos Background author: Tristan Britt (\texttt{tristan@warlock.xyz}), 0xAlcibiades (\texttt{alcibiades@warlock.xyz}) date: July 2024 --- ## Glossary of Notation | Notation | Meaning | |--------|---------| | $\{ \}$ | Set delimiters | | $\varnothing$ | Empty set | | $\in$ | Element of | | $\notin$ | Not an element of | | $\subset$ | Proper subset | | $\subseteq$ | Subset or equal to | | $\supset$ | Proper superset | | $\supseteq$ | Superset or equal to | | $\cup$ | Union | | $\cap$ | Intersection | | $\setminus$ | Set difference | | $\overline{A}$ | Complement of set $A$ | | $A^c$ | Complement of set $A$ (alternative notation) | | $\mathcal{P}(A)$ | Power set of $A$ | | $A \times B$ | Cartesian product of sets $A$ and $B$ | | $|A|$ | Cardinality (size) of set $A$ | | $\aleph_0$ | Cardinality of the natural numbers (countable infinity) | | $\mathfrak{c}$ | Cardinality of the real numbers (continuum) | | $\forall$ | For all | | $\exists$ | There exists | | $\exists!$ | There exists a unique | | $:$ or $\mid$ | Such that | | $\{ x \in A \mid P(x) \}$ | Set-builder notation: set of all $x$ in $A$ such that $P(x)$ is true | | $[a,b]$ | Closed interval from $a$ to $b$ | | $(a,b)$ | Open interval from $a$ to $b$ | | $[a,b)$ or $(a,b]$ | Half-open intervals | | $A \triangle B$ | Symmetric difference of sets $A$ and $B$ | | $\bigsqcup$ | Disjoint union | | $\bigcup_{i \in I} A_i$ | Union of a family of sets | | $\bigcap_{i \in I} A_i$ | Intersection of a family of sets | | $A^n$ | Cartesian product of $A$ with itself $n$ times | | $f: A \to B$ | Function $f$ from set $A$ to set $B$ | | $f(A)$ | Image of set $A$ under function $f$ | | $f^{-1}(B)$ | Preimage of set $B$ under function $f$ | | $\text{dom}(f)$ | Domain of function $f$ | | $\text{cod}(f)$ | Codomain of function $f$ | | $\text{range}(f)$ | Range of function $f$ | | $\text{id}_A$ | Identity function on set $A$ | | $f \circ g$ | Composition of functions $f$ and $g$ | | $f|_A$ | Restriction of function $f$ to set $A$ | | $f: A \twoheadrightarrow B$ | Surjective function from $A$ to $B$ | | $f: A \hookrightarrow B$ | Injective function from $A$ to $B$ | | $f: A \xrightarrow{\sim} B$ | Bijective function from $A$ to $B$ | | $\mathbb{Z}$ | set of all integers | | $\mathbb{Q}$ | set of all rational numbers | | $\mathbb{R}$ | set of all real numbers | | $\mathbb{C}$ | set of all complex numbers | | $\Leftrightarrow$, iff | if and only if | | $\mathbb{Z}^+, \mathbb{Q}^+, \mathbb{R}^+$ | sets of all positive integers, rational numbers, and real numbers, respectively | | $a\mid b$ | $a$ divides $b$ | | $*$ | binary operation | | $\Delta$ | symmetric difference | | $e$ | identity element of a group | | $GL(2,\mathbb{R})$ | general linear group of degree 2 over $\mathbb{R}$ | | $P(X)$ | set of subsets $X$ | | $\mathbb{Z}_n$ | the set $\{0, 1, 2, \ldots, n-1\}$ | | $a \equiv b \pmod{n}$ | the integers $a$ and $b$ are congruent modulo $n$ | | $\oplus, \otimes$ | addition and multiplication modulo $n$ | | $o(x)$ | order of the element $x$ | | $\langle x \rangle$ | set of powers of the element $x$ | | $\|G\|$ | order of the group $G$ | | $V$ | Klein's 4-group | | $Z(G)$ | center of the group $G$ | | $GL(2,\mathbb{C})$ | general linear group of degree 2 over $\mathbb{C}$ | | $Q_8$ | group of unit quaternions | | $SL(2,\mathbb{R})$ | special linear group of degree 2 over $\mathbb{R}$ | | $Z(g)$ | centralizer of the element $g$ | | $G \times H$ | direct product of $G$ and $H$ | | $f:S \to T$ | $f$ is a function from $S$ to $T$ | | $f^{-1}$ | the inverse of the function $f$ | | $g \circ f$ | composite function | | $i_X$ | identity function on the set $X$ | | $S_X$ | symmetric group on $X$ | | $S_n$ | symmetric group of degree $n$ | | $A_n$ | alternating group of degree $n$ | | $D_4$ | group of symmetries of a square | | $x \equiv_H y$ | means $xy^{-1} \in H$ | | $x_H \equiv y$ | means $x^{-1}y \in H$ | | $[G:H]$ | the index of $H$ in $G$ | | $H \triangleleft G$ | $H$ is a normal subgroup of $G$ | | $G/H$ | quotient group of $G$ by $H$ | | $G \cong H$ | $G$ and $H$ are isomorphic | | $\varphi^{-1}(J)$ | inverse image of $J$ under $\varphi$ | | $\text{Aut}(G)$ | group of automorphisms of the group $G$ | | $\rho$ | canonical homomorphism | | $\ker(\varphi)$ | kernel of the homomorphism $\varphi$ | | $N(H)$ | normalizer of the subgroup $H$ | | $R \oplus S$ | direct sum of the rings $R$ and $S$ | | $M_2(\mathbb{R})$ | ring of all $2 \times 2$ real matrices | | $\mathbb{Z}[i]$ | ring of Gaussian integers | | $\mathbb{H}$ | ring of quaternions | | $R/I$ | quotient ring of $R$ by $I$ | | $R[X]$ | polynomial ring over $R$ | | $F(a)$ | field obtained by adjoining $a$ to the field $F$ | | $\text{irr}(a/F)$ | irreducible polynomial of $a$ over $F$ | | $\deg(a/F)$ | degree of $a$ over $F$ | | $[E : F]$ | degree of the field $E$ over the field $F$ | | $\mathbb{C}_c$ | field of constructible complex numbers | | $\Gamma(E/F)$ | Galois group of $E$ over $F$ | | $\Phi(H)$ | fixed field of the subgroup $H$ of $\Gamma(E/F)$ | | $\Gamma(f(X)/F)$ | Galois group of $f(X)$ over $F$ |