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Glossary of Notation

Notation Meaning
{} Set delimiters
∅ Empty set
∈ Element of
/∈ Not an element of
⊂ Proper subset
⊆ Subset or equal to
⊃ Proper superset
⊇ Superset or equal to
∪ Union
∩ Intersection
\ Set difference
A Complement of set A
Ac Complement of set A (alternative notation)
P(A) Power set of A
A×B Cartesian product of sets A and B
|A| Cardinality (size) of set A
ℵ0 Cardinality of the natural numbers (countable infinity)
c Cardinality of the real numbers (continuum)
∀ For all
∃ There exists
∃! There exists a unique
: or | Such that
{x ∈ A | P (x)} Set-builder notation: set of all x in A such that P (x) is

true
[a, b] Closed interval from a to b
(a, b) Open interval from a to b
[a, b) or (a, b] Half-open intervals
A△B Symmetric difference of sets A and B⊔ Disjoint union⋃

i∈I Ai Union of a family of sets⋂
i∈I Ai Intersection of a family of sets

An Cartesian product of A with itself n times
f : A→ B Function f from set A to set B
f(A) Image of set A under function f
f−1(B) Preimage of set B under function f
dom(f) Domain of function f
cod(f) Codomain of function f
range(f) Range of function f
idA Identity function on set A
f ◦ g Composition of functions f and g
f |A Restriction of function f to set A
f : A↠ B Surjective function from A to B
f : A ↪→ B Injective function from A to B
f : A ∼−→ B Bijective function from A to B
Z set of all integers
Q set of all rational numbers
R set of all real numbers
C set of all complex numbers
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Notation Meaning
⇔, iff if and only if
Z+,Q+,R+ sets of all positive integers, rational numbers, and real

numbers, respectively
a | b a divides b
∗ binary operation
∆ symmetric difference
e identity element of a group
GL(2,R) general linear group of degree 2 over R
P (X) set of subsets X
Zn the set {0, 1, 2, . . . , n− 1}
a ≡ b (mod n) the integers a and b are congruent modulo n
⊕,⊗ addition and multiplication modulo n
o(x) order of the element x
⟨x⟩ set of powers of the element x
∥G∥ order of the group G
V Klein’s 4-group
Z(G) center of the group G
GL(2,C) general linear group of degree 2 over C
Q8 group of unit quaternions
SL(2,R) special linear group of degree 2 over R
Z(g) centralizer of the element g
G×H direct product of G and H
f : S → T f is a function from S to T
f−1 the inverse of the function f
g ◦ f composite function
iX identity function on the set X
SX symmetric group on X
Sn symmetric group of degree n
An alternating group of degree n
D4 group of symmetries of a square
x ≡H y means xy−1 ∈ H
xH ≡ y means x−1y ∈ H
[G : H] the index of H in G
H ◁ G H is a normal subgroup of G
G/H quotient group of G by H
G ∼= H G and H are isomorphic
φ−1(J) inverse image of J under φ
Aut(G) group of automorphisms of the group G
ρ canonical homomorphism
ker(φ) kernel of the homomorphism φ
N(H) normalizer of the subgroup H
R⊕ S direct sum of the rings R and S
M2(R) ring of all 2× 2 real matrices
Z[i] ring of Gaussian integers
H ring of quaternions
R/I quotient ring of R by I
R[X] polynomial ring over R
F (a) field obtained by adjoining a to the field F
irr(a/F ) irreducible polynomial of a over F
deg(a/F ) degree of a over F
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Notation Meaning
[E : F ] degree of the field E over the field F
Cc field of constructible complex numbers
Γ(E/F ) Galois group of E over F
Φ(H) fixed field of the subgroup H of Γ(E/F )
Γ(f(X)/F ) Galois group of f(X) over F

Math Primer for BLS and BN254
We’ll begin with fundamental concepts in set theory, group theory, and ring theory. These will provide the
basis for understanding more advanced structures like fields and vector spaces. Number theory and Euclidean
domains will be introduced to provide essential tools for cryptographic applications.
As we progress, we’ll delve into algebraic varieties and elliptic curves, which are crucial for understanding the
BN254 curve. We’ll then explore bilinear pairings, which are fundamental to the BLS signature scheme.
Finally, we’ll apply these concepts to the specific case of the BN254 curve and the BLS signature scheme,
culminating in an exploration of threshold signatures, R1CS, and distributed multi-party computation.
By the end of this primer, readers will have a solid grasp of the mathematical concepts necessary to understand
and implement BLS threshold signatures using the BN254 pairing. This knowledge is crucial for developing secure
and efficient cryptographic protocols in various applications, including blockchain technology and distributed
systems.
The roadmap of our journey will be Sets → Groups → Rings → Domains → Fields → Vector Spaces → Algebraic
Varieties → Elliptic Curves → Bilinear Pairings → BN254 → BLS → BLS Thresholds → R1CS → Distributed MPC,
roughly.
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Set Theory

Set theory forms the bedrock of modern mathematics. It provides us with a language to discuss collections of
objects and the relationships between them. For a more in-depth treatment of set theory, Halmos’ “Naive Set
Theory” and Suppes’ “Axiomatic Set Theory” are superb resources.

Basic Definitions

1. A set is a collection of distinct objects, called elements or members of the set.
2. If a is an element of set A, we write a ∈ A.
3. The empty set, denoted ∅, is the unique set with no elements.
4. A set A is a subset of set B, denoted A ⊆ B, if every element of A is also an element of B.
5. Every set A ⊆ A, or in other words, every set is contained by itself.

Set Operations

Set theory defines several operations on sets:
1. Union: A ∪B = {x : x ∈ A or x ∈ B} The union of two sets contains all elements that are in either set.
2. Intersection: A ∩B = {x : x ∈ A and x ∈ B} The intersection contains all elements common to both sets.
3. Difference: A \B = {x : x ∈ A and x /∈ B} The difference contains elements in A but not in B.
4. Symmetric Difference: A△B = (A \B) ∪ (B \A) This operation results in elements that are in either set,

but not in both.

Cartesian Product

The Cartesian product of two sets A and B, denoted A×B, is the set of all ordered pairs where the first element
comes from A and the second from B:

A×B = {(a, b) : a ∈ A and b ∈ B}

Functions

A function f from set A to set B, denoted f : A→ B, is a rule that assigns to each element of A exactly one
element of B. We call A the domain and B the codomain of f . The set of all f(a) for a ∈ A is called the range
of f .
Functions can have special properties:

1. Injective (one-to-one): ∀a1, a2 ∈ A, f(a1) = f(a2) =⇒ a1 = a2
2. Surjective (onto): ∀b ∈ B, ∃a ∈ A : f(a) = b
3. Bijective: Both injective and surjective

Cardinality

The cardinality of a set A, denoted |A|, is the number of elements in A if A is finite. For infinite sets, cardinality
becomes more complex:

• Countably infinite: A set with the same cardinality as the natural numbers, denoted ℵ0.
• Uncountable: An infinite set that is not countably infinite, such as the real numbers, with cardinality

denoted c.
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Group Theory

Group theory is the study of symmetries and algebraic structures. Professor Macauley’s Visual Group Theory
lectures on YouTube and Nathan Carter’s “Visual Group Theory” book provide a beautiful and approachable
exposition. Saracino’s “Abstract Algebra” is approachable but in need of fresh typesetting. Lang’s “Algebra” is
also a good resource here and more generally on rings and fields to come.

Groups

A group is an ordered pair (G, ∗) where G is a set and ∗ is a binary operation on G satisfying four axioms:
1. Closure: ∀a, b ∈ G, a ∗ b ∈ G
2. Associativity: ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)
3. Identity: ∃e ∈ G,∀a ∈ G : a ∗ e = e ∗ a = a
4. Inverse: ∀a ∈ G,∃a−1 ∈ G : a ∗ a−1 = a−1 ∗ a = e

The identity element is often denoted as e, and the inverse of an element a is written as a−1. We also have
“subtraction” defined through the binary operator of the inverse of an element.

Abelian Groups

An Abelian group, named after Norwegian mathematician Niels Henrik Abel, is a group which is commutative
under the binary operation ∗. A group G is abelian if a ∗ b = b ∗ a,∀a, b ∈ G.

Finite Groups

A group G is finite if the number of elements in G is finite, which then has cardinality or order |G|.

Lagrange’s Theorem

For a finite group G with a ∈ G and let there exist a positive integer d such that ad is the smallest positive power
of a that is equal to e, the identity of the group. Let n = |G| be the order of G, and let d be the order of a, then
an = e and d | n.

Subgroups

A subset H of a group G is a subgroup if it forms a group under the same operation as G. We denote this as
H ≤ G. The order of a subgroup always divides the order of the group (Lagrange’s Theorem). Similar to a set,
every group G ⊆ G, and for every group there is a trivial subgroup containing only the identity.

Homomorphisms and Isomorphisms

A function f : G → H between groups is a homomorphism if it preserves the group operation: f(ab) =
f(a)f(b)∀a, b ∈ G.
An isomorphism is a bijective homomorphism. If there exists an isomorphism between groups G and H , we say
they are isomorphic and write G ∼= H.

Cosets and Normal Subgroups

For a subgroup H of G and an element a ∈ G, we define:
• Left coset: aH = {ah : h ∈ H}
• Right coset: Ha = {ha : h ∈ H}

A subgroup N of G is called normal if gN = Ng∀g ∈ G. We denote this as N ◁ G.
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Cyclic Groups

A group G is cyclic if there exists an element g ∈ G such that every element of G can be written as a power of g:

G = ⟨g⟩ = {gn : n ∈ Z}

Here, g is called a generator of G. Cyclic groups have several important properties:
1. Every element x ∈ G can be written as x = gn for some integer n.
2. If G is infinite, it is isomorphic to (Z,+).
3. If G is finite with |G| = n, it is isomorphic to (Z/nZ,+).
4. All cyclic groups are Abelian.
5. Subgroups of cyclic groups are cyclic.
6. The order of G is the smallest positive integer m such that gm = e.

Quotient Groups

If N ◁ G, we can form the quotient group G/N , whose elements are the cosets of N in G.
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Ring Theory

Rings

A ring (R,+, ·) is an algebraic structure consisting of a set R with two binary operations, addition (+) and
multiplication (·), satisfying the following axioms:

1. (R,+) is an abelian group:
• Closure: ∀a, b ∈ R, a+ b ∈ R
• Associativity: ∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c)
• Commutativity: ∀a, b ∈ R, a+ b = b+ a
• Identity: ∃0 ∈ R,∀a ∈ R, a+ 0 = 0 + a = a
• Inverse: ∀a ∈ R,∃(−a) ∈ R, a+ (−a) = (−a) + a = 0

2. (R, ·) is a monoid:
• Closure: ∀a, b ∈ R, a · b ∈ R
• Associativity: ∀a, b, c ∈ R, (a · b) · c = a · (b · c)

3. Distributivity:
• Left distributivity: ∀a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c)
• Right distributivity: ∀a, b, c ∈ R, (a+ b) · c = (a · c) + (b · c)

A ring is called commutative if multiplication is commutative, i.e., ∀a, b ∈ R, a · b = b · a. If a ring has a
multiplicative identity element 1 ̸= 0 such that ∀a ∈ R, 1 · a = a · 1 = a, it is called a ring with unity.

Ideals

An ideal of a ring R is a subset I ⊆ R where:
1. (I,+) is a subgroup of (R,+), meaning:

a. I is non-empty
b. For all a, b ∈ I, a− b ∈ I

2. For all r ∈ R and i ∈ I, both r · i ∈ I and i · r ∈ I (absorption property)
The absorption property of ideals interacts with both ring operations, as it involves multiplication by any ring
element and the result remains in the ideal.

Quotient Rings

For a ring R and ideal I, the quotient ring R/I is defined as:
R/I = {r + I : r ∈ R}

where r + I = {r + i : i ∈ I} is the coset of r modulo I.
Operations in R/I are defined as:

1. Addition: (a+ I) + (b+ I) = (a+ b) + I
2. Multiplication: (a+ I) · (b+ I) = (a · b) + I

These operations are well-defined because of the ideal properties, particularly the absorption property.

Polynomial Rings

Given a ring R, the polynomial ring R[x] is defined as the set of all formal sums of the form:

f(x) =
n∑

i=0
aix

i = a0 + a1x+ a2x
2 + ...+ anx

n

where:
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1. n ∈ Z+

2. ai ∈ R (called coefficients)
3. x is an indeterminate (or variable)
4. Only finitely many ai are non-zero

The ring structure of R[x] is defined by the following operations:
1. Addition: For f(x) =

∑
aix

i and g(x) =
∑
bix

i,
(f + g)(x) =

∑max(deg(f),deg(g))
i=0 (ai + bi)xi

2. Multiplication: For f(x) =
∑
aix

i$ and $g(x) =
∑
bix

i,
(f · g)(x) =

∑deg(f)+deg(g)
k=0 (

∑
i+j=k aibj)xk

Key properties:
1. The zero polynomial, denoted 0, has all coefficients equal to 0.
2. If R has a unity 1 ̸= 0, then R[x] has a unity, which is the constant polynomial 1.
3. R is embedded in R[x] as the set of constant polynomials.
4. If R is commutative, then R[x] is commutative.
5. The degree of a non-zero polynomial f(x), denoted deg(f), is the highest power of x with a non-zero

coefficient.
This definition treats polynomials as formal algebraic objects, not as functions. The construction can be extended
to multiple variables, e.g., R[x, y] = (R[x])[y].
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Number Theory

Prime Numbers and Divisibility

A prime number is a natural number greater than 1 that is only divisible by 1 and itself. The fundamental
theorem of arithmetic states that every integer greater than 1 can be uniquely represented as a product of prime
powers.
For integers a and b, we say a divides b (denoted a | b) if there exists an integer k such that b = ak. If a | b and
a | c, then a | (bx+ cy) for any integers x and y.

Greatest Common Divisor (GCD)

The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest positive integer that
divides both a and b. Key properties include:

1. gcd(a, b) = gcd(|a|, |b|)
2. gcd(a, b) = gcd(b, a mod b) (basis for the Euclidean algorithm)
3. There exist integers x and y such that gcd(a, b) = ax+ by (Bézout’s identity)

Integral Domains

An integral domain is a commutative ring with unity that has no zero divisors. In other words, for all non-zero
elements a, b ∈ R, if a · b = 0, then either a = 0 or b = 0. This property is crucial as it allows for cancellation in
multiplication: if a · b = a · c and a ̸= 0, then b = c.

Euclidean Domains

A Euclidean domain is an integral domainR equipped with a function δ : R\{0} → N∪{0} (called the Euclidean
function) satisfying:

1. For all non-zero a, b ∈ R, δ(a) ≤ δ(ab)
2. For all a, b ∈ R with b ̸= 0, there exist q, r ∈ R such that a = bq + r and either r = 0 or δ(r) < δ(b)

The second property is known as the Euclidean division algorithm, which is a generalization of the division
algorithm for integers. This algorithm allows us to perform division with remainders in the domain.

Examples of Euclidean Domains

1. The integers Z with δ(a) = |a|
2. The polynomial ring F [x] over a field F with δ(p) = deg(p)

Euclidean Division

Euclidean division is the process of dividing one integer by another to produce a quotient and a remainder. In
the context of modular arithmetic, we’re particularly interested in the remainder.
For integers a and b with b ̸= 0, there exist unique integers q (quotient) and r (remainder) such that:
a = bq + r, where 0 ≤ r < |b|

Euclidean Division Algorithm Here’s a pseudocode algorithm for Euclidean division:
function euclidean_division(a, b):

if b == 0:
error "Division by zero"

q = floor(a / b)
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r = a - b * q
if r < 0:

if b > 0:
q = q - 1
r = r + b

else:
q = q + 1
r = r - b

return (q, r)

In Z5, we’re primarily concerned with the remainder r, which will always be in the set {0, 1, 2, 3, 4}.

Extended Euclidean Division

The extended Euclidean Division is a way to compute the greatest common divisor (GCD) of two numbers a and
b, and also find the coefficients of Bézout’s identity, which states that:
gcd(a, b) = ax+ by

for some integers x and y.

Extended Euclidean Division Algorithm

function extended_euclidean_division(a, b):
if b == 0:

return (a, 1, 0)
else:

(gcd, x', y') = extended_gcd(b, a mod b)
x = y'
y = x' - floor(a / b) * y'
return (gcd, x, y)

This algorithm not only computes the GCD but also finds the coefficients x and y in Bézout’s identity.
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Field Theory

Fields

A field F is a set with two binary operations defined over it and closed under it, usually addition (+) and
multiplication (·). The field F must satisfy the following axioms:

1. (F,+) is an abelian group with identity element 0
2. (F,+, ·) is a commutative ring with identity element 0
3. (F \ {0}, ·) is an abelian group with identity element 1
4. Distributivity: a · (b+ c) = (a · b) + (a · c)∀a, b, c ∈ F

Formally, a field is a commutative ring where every non-zero element has a multiplicative inverse. For every
a ∈ F, a ̸= 0, there exists b ∈ F such that a · b = 1F .
Examples of infinite fields include the rational numbers Q, the real numbers R, and the complex numbers C.

Division in Infinite Fields

In a field F , division is defined for all non-zero elements. For any a, b ∈ F with b ̸= 0, we define:
a÷ b = a · b−1

where b−1 is the unique multiplicative inverse of b. This inverse always exists for non-zero elements in a field.
Every field is automatically a Euclidean domain, where we can define δ(a) = 0 for all non-zero a. The Euclidean
division algorithm simplifies in fields: for any a, b ∈ F with b ̸= 0, we can always find unique q, r ∈ F such that:
a = bq + r

where r = 0, and q = a÷ b.

Finite Fields

Finite fields, also known as Galois fields, are fields with a finite number of elements. They are denoted GF (q) or
Fq, where q = pn for some prime p and positive integer n.
Key properties of finite fields include:

1. The order (number of elements) of a finite field is always a prime power.
2. For each prime power q, there exists a unique (up to isomorphism) finite field of order q.
3. The multiplicative group of a finite field is cyclic.

Modular Arithmetic in Zp

For any prime p, we define the prime field Zp as the set of integers modulo p:
Zp = {0, 1, 2, ..., p− 1}

Example: In Z5, we have {0, 1, 2, 3, 4}.
Modular arithmetic is a system of arithmetic for finite fields and rings, where numbers “wrap around” when
reaching a certain value, called the modulus.
All operations in Zp are performed modulo p.

Addition and Subtraction For a, b ∈ Zp:
a⊕ b = (a+ b) mod p a⊖ b = (a− b) mod p

Example: In Z5, the addition table is:
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⊕ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Multiplication and Division For a, b ∈ Zp:
a⊗ b = (a× b) mod p

Division is defined as multiplication by the multiplicative inverse.
Example: In Z5, the multiplication table is:

⊗ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

In finite fields, division is performed as follows:
1. For prime fields Fp: a÷ b = a · b−1 (mod p)
2. For extension fields Fpn : a(x)÷ b(x) = a(x) · b(x)−1 (mod f(x))

where f(x) is the irreducible polynomial used to construct Fpn . In both cases, the multiplicative inverse can be
computed using the Extended Euclidean Algorithm.

Euler’s Totient Function Euler’s Totient Function, denoted as ϕ(n) or φ(n), counts the number of positive
integers up to n that are relatively prime to n (i.e., their greatest common divisor with n is 1).

Definition For a positive integer n, ϕ(n) is the count of numbers k in the range 1 ≤ k < n where gcd(k, n) = 1.

Formula For a positive integer n with prime factorization n = pa1
1 · p

a2
2 · ... · p

ak

k :

ϕ(n) = n

k∏
i=1

(1− 1
pi

)

Properties

1. For a prime number p, ϕ(p) = p− 1
2. ϕ is multiplicative: if gcd(a, b) = 1, then ϕ(ab) = ϕ(a) · ϕ(b)
3. For a prime power pk, ϕ(pk) = pk − pk−1 = pk(1− 1

p )

Examples

1. ϕ(10) = 4, as 1, 3, 7, 9 are relatively prime to 10
2. ϕ(12) = 4, as 1, 5, 7, 11 are relatively prime to 12
3. ϕ(15) = 8, as 1, 2, 4, 7, 8, 11, 13, 14 are relatively prime to 15
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Calculation Method

1. Find the prime factorization of n
2. For each prime factor p, multiply n by (1− 1

p )
3. The result is ϕ(n)

Fermat’s Little Theorem and Euler’s Theorem Fermat’s Little Theorem states that for any integer a not
divisible by p:
ap−1 ≡ 1 (mod p)

Example: In Z5, for any non-zero a, a4 ≡ 1 (mod 5)

We can verify this using the multiplication table: - 14 = 1 ≡ 1 (mod 5) - 24 = 2⊗2⊗2⊗2 = 4⊗2⊗2 = 3⊗2 = 1
(mod 5) - 34 = 3⊗ 3⊗ 3⊗ 3 = 2⊗ 3⊗ 3 = 1⊗ 3 = 3 (mod 5) - 44 = 4⊗ 4⊗ 4⊗ 4 = 1⊗ 4⊗ 4 = 4⊗ 4 = 1
(mod 5)

Applications: 1. Finding multiplicative inverses: a−1 ≡ ap−2 (mod p) Example: In Z5, 3−1 ≡ 33 ≡ 2 (mod 5)
2. Efficient exponentiation: an ≡ an mod (p−1) (mod p) for a ̸= 0 Example: In Z5, 310 ≡ 310 mod 4 ≡ 32 ≡ 4
(mod 5)

Congruences and Residue Classes In Zp, two integers a and b are congruent if:
a ≡ b (mod p)

The residue classes in Zp are:
[i] = {..., i− p, i, i+ p, i+ 2p, ...} for i = 0, 1, ..., p− 1

Example: In Z5, the residue classes are: - [0] = {. . . ,−5, 0, 5, 10, . . .} - [1] = {. . . ,−4, 1, 6, 11, . . .} - [2] =
{. . . ,−3, 2, 7, 12, . . .} - [3] = {. . . ,−2, 3, 8, 13, . . .} - [4] = {. . . ,−1, 4, 9, 14, . . .}

Coprime Numbers Two integers a and b are considered coprime (or relatively prime) if their greatest common
divisor (GCD) is 1. In other words:

gcd(a, b) = 1

Some key properties of coprime numbers include:
1. If a and b are coprime, there exist integers x and y such that:

ax+ by = 1

This is known as Bézout’s identity.
2. If a and b are coprime, then:

(a mod b) has a multiplicative inverse modulo b

This means there exists an integer x such that:

ax ≡ 1 (mod b)

3. The product of coprime numbers is coprime to each of the original numbers.
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To find coprime numbers, one can use the Euclidean algorithm to compute the GCD. If the GCD is 1, the numbers
are coprime. For example:

• 8 and 15 are coprime because gcd(8, 15) = 1
• 14 and 21 are not coprime because gcd(14, 21) = 7

In the context of the Chinese remainder theorem, coprimality is a crucial requirement. The CRT states that if we
have a system of congruences with coprime moduli:

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)
...

x ≡ ak (mod mk)

where all mi are pairwise coprime, then there exists a unique solution moduloM = m1 ·m2 · ... ·mk.

Chinese Remainder Theorem The Chinese Remainder Theorem (CRT) states that if one has a system of
congruences with coprime moduli, there exists a unique solution modulo the product of the moduli. Given a
system of congruences:

x ≡ a1 (mod m1) x ≡ a2 (mod m2)
... x ≡ ak (mod mk)

Where allmi are pairwise coprime, there exists a unique solution xmoduloM = m1 ∗m2 ∗ ... ∗mk. The solution
can be constructed as: x =

∑k
i=1 ai ∗Mi ∗ yi (mod M) whereMi = M/mi and yi = M−1

i (mod mi).

Polynomial Modular Arithmetic in Zp[x]

Polynomial modular arithmetic in prime fields combines concepts from modular arithmetic and polynomial
arithmetic over finite fields. Let Fp be a prime field with p elements, where p is prime.

Polynomial Ring Fp[x] The polynomial ring Fp[x] consists of all polynomials with coefficients from Fp. A
general element of Fp[x] has the form:

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where ai ∈ Fp for all i.

Basic Operations

1. Addition and Subtraction: For f(x) =
∑
aix

i and g(x) =
∑
bix

i, (f + g)(x) =
∑

(ai⊕ bi)xi (f − g)(x) =∑
(ai ⊖ bi)xi

2. Multiplication: (f · g)(x) =
∑

(
∑
ai ⊗ bj)xi+j

3. Division with Remainder: For f(x) and g(x) ̸= 0, there exist unique q(x) and r(x) such that: f(x) =
g(x)q(x) + r(x), where deg(r) < deg(g)
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Modular Reduction

When working with polynomials modulo another polynomial m(x), we perform operations and then reduce the
result modulo m(x). This is denoted as:
f(x) ≡ g(x) (mod m(x))

which means m(x) divides f(x)− g(x).

Examples

1. In Z5[x] mod (x2 + 1): (x+ 1)2 ≡ x2 + 2x+ 1 ≡ 2x+ 2

2. In Z5[x] mod (x2 + 2): (2x+ 1)(x+ 2) ≡ 2x2 + 4x+ x+ 2 ≡ 2x2 + 2x+ 2 ≡ 3x+ 3

Irreducible Polynomials

A polynomial f(x) ∈ Zp[x] is irreducible if it cannot be factored into the product of two non-constant polynomials
in Zp[x]. Irreducible polynomials are crucial for constructing finite field extensions.
For example, x2 + 1 is irreducible in Z5[x] but reducible in Z3[x] as x2 + 1 ≡ (x+ 1)(x+ 2) (mod 3).

Subfields

Definition A subfield of a field F is a subset K ⊆ F that is itself a field under the operations of F . More
formally, K is a subfield of F if:

1. K is a subset of F
2. K is closed under the addition and multiplication operations of F
3. K contains the additive and multiplicative identities of F
4. Every element in K has an additive inverse in K
5. Every non-zero element in K has a multiplicative inverse in K

Properties

1. Minimal Subfield: Every field F contains a unique smallest subfield, called the prime subfield. It is
isomorphic to either Q (if F has characteristic 0) or Fp (if F has characteristic p).

2. Tower Law: If E is a subfield of F and F is a subfield of K, then [K : E] = [K : F ][F : E].
3. Degree of Subfield: If K is a subfield of F , then [F : K] divides [F : Fp] where Fp is the prime subfield of
F .

4. Galois Correspondence: In a Galois extension F/K, there is a one-to-one correspondence between the
subfields of F containing K and the subgroups of the Galois group Gal(F/K).

Examples

1. Subfields of C:
• Q ⊂ R ⊂ C
• Q(

√
2) ⊂ R

• Q(i) ⊂ C

2. Subfields of Finite Fields: Let Fpn be a finite field. Then Fpm is a subfield of Fpn if and only if m divides
n.
Example: Subfields of F24

• F2 ⊂ F24
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• F22 ⊂ F24

3. Algebraic Number Fields: Consider Q(
√

2,
√

3). Its subfields include:
• Q
• Q(

√
2)

• Q(
√

3)
• Q(

√
6)
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Field Extensions and Towers over Finite Fields

Let p be a prime number. We’ll consider field extensions over Zp = Fp, the finite field with p elements.

Basic Definitions

1. Automorphism: An automorphism of a field F is a bijective ring homomorphism from F to itself. The set
of all automorphisms of F forms a group under composition.

2. Endomorphism: An endomorphism of a field F is a ring homomorphism from F to itself. Unlike
automorphisms, endomorphisms are not necessarily bijective.

3. Frobenius Endomorphism: In a field of characteristic p, the map ϕ : x 7→ xp is an endomorphism called
the Frobenius endomorphism. In finite fields, it’s always an automorphism.

Field Extensions

A field extension E/F is a field E containing F as a subfield. The degree of the extension, denoted [E : F ], is
the dimension of E as a vector space over F .
For a finite field Fp, we can construct extensions Fpn of degree n over Fp.
Example in Z5: Let’s construct F25 as an extension of F5.

1. Choose an irreducible polynomial f(x) = x2 + 2 ∈ F5[x].
2. F25 = F5[x]/(f(x)) = {ax+ b | a, b ∈ F5}
3. Arithmetic in F25 is performed modulo f(x).

For instance, in F25:
(3x+ 4) ∗ (2x+ 1) = 6x2 + 3x+ 8x+ 4 = 6x2 + 11x+ 4 ≡ 6(3) + x+ 4 ≡ 3x+ 4 (mod x2 + 2)

Towers of Field Extensions

A tower of field extensions is a sequence of fields F1 ⊂ F2 ⊂ . . . ⊂ Fn where each Fi+1/Fi is a field extension.
General construction for Fpn : We can build Fpn as a tower of extensions over Fp:
Fp ⊂ Fpk ⊂ Fpm ⊂ Fpn

where k|m|n.
Example tower in Z5: Let’s construct F625 = F4

5 as a tower:
F5 ⊂ F25 ⊂ F625

1. F25 = F5[x]/(x2 + 2) as before
2. F625 = F25[y]/(y2 + y + 2)

In this tower: - [F25 : F5] = 2 - [F625 : F25] = 2

By the tower law: [F625 : F5] = 2 ∗ 2 = 4

Algebraicity

This is a topic that is advanced even for the scope of this revision, but it becomes important to consider later, and
is a key concept of Galois theory. Given an extension E ⊃ F and an element ϑ ∈ E, the following conditions are
equivalent:

• ϑ is a root of f(t) ̸= 0 ∈ F [t]
• {1, ϑ, ϑ2, · · · } are linearly independent on F ;
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• F [ϑ] is a field
ϑ is called algebraic over F if any of these conditions are met (and thus all of them). An extension E ⊂ F is
algebraic iff ∀ϑ ∈ E, ϑ is algebraic. Also if [E : F ] <∞, E is algebraic over F .
You can also show that for ϑ ∈ E, if f(ϑ) = 0 for f(t) = a0 + a1t+ · · ·+ an−1t

n−1 + ant
n with ai ∈ E algebraic,

then ϑ is algebraic over F , aka addition and multiplication preserve algebraicity.
For prime order fields, all this means is that there is a unique (up to isomorphism) extension field Fq ⊇ Fp of
degree [Fq : Fp] = r and order q = pr. Namely:

Fp ≜
∞⋃

r=1
Fpr

Defining a morphism or curve, for example, over the algebraic closure of a finite field is a concise way to say that
we’re interested in points lying in all valid extensions that satisfy the curve equation, and that the mapping or
what not behaves similarly for all of them.

Automorphisms and the Frobenius Endomorphism

In Fpn , the Frobenius endomorphism ϕ : x 7→ xp is an automorphism, and its powers generate the Galois group
of Fpn over Fp.
Example in F25 over F5: The Frobenius automorphism ϕ on F25 = F5[x]/(x2 + 2) is:
ϕ(ax+ b) = (ax+ b)5 = a5x5 + b5 = ax5 + b ≡ a(3x) + b (mod x2 + 2)

The Galois group Gal(F25/F5) = {id, ϕ} is cyclic of order 2.
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Vector Spaces

Vector spaces are fundamental algebraic structures that generalize the notion of vectors in two or three-
dimensional space to any number of dimensions.

Definition of Vector Spaces

A vector space V over a field F is a set equipped with two operations:
1. Vector addition: + : V × V → V
2. Scalar multiplication: · : F × V → V

These operations must satisfy the following axioms for all u, v, w ∈ V and a, b ∈ F :
1. (u+ v) + w = u+ (v + w) (Associativity of addition)
2. u+ v = v + u (Commutativity of addition)
3. ∃0 ∈ V such that v + 0 = v for all v ∈ V (Additive identity)
4. For each v ∈ V , ∃(−v) ∈ V such that v + (−v) = 0 (Additive inverse)
5. a(u+ v) = au+ av (Distributivity of scalar multiplication over vector addition)
6. (a+ b)v = av + bv (Distributivity of scalar multiplication over field addition)
7. (ab)v = a(bv) (Associativity of scalar multiplication)
8. 1v = v where 1 is the multiplicative identity in F

Linear Independence and Basis

A set of vectors {v1, . . . , vn} in a vector space V is linearly independent if the equation:

a1v1 + a2v2 + · · ·+ anvn = 0

implies a1 = a2 = · · · = an = 0 for scalars ai ∈ F .
A basis for a vector space V is a linearly independent set of vectors that spans V . In other words, every vector in
V can be uniquely expressed as a linear combination of basis vectors.

Dimension and Subspaces

The dimension of a vector space V , denoted dim(V ), is the number of vectors in any basis of V . A finite-
dimensional vector space has a finite basis, while an infinite-dimensional space does not.
A subspaceW of a vector space V is a subset of V that is itself a vector space under the operations inherited
from V .

Concrete Example: Vector Space over Z5

To illustrate these concepts, let’s consider a concrete example using the finite field Z5 (integers modulo 5). We’ll
explore the vector space V = Z5 × Z5, which consists of ordered pairs (a, b) where a, b ∈ Z5. Our scalar field is
Z5 = {0, 1, 2, 3, 4}.

Vector Addition For (a1, b1), (a2, b2) ∈ V :

(a1, b1) + (a2, b2) = ((a1 + a2) mod 5, (b1 + b2) mod 5)

Example:
(2, 3) + (4, 1) = (1, 4)
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Scalar Multiplication For c ∈ Z5 and (a, b) ∈ V :

c · (a, b) = ((ca) mod 5, (cb) mod 5)

Example:
3 · (2, 4) = (1, 2)

Verifying Vector Space Axioms Let’s verify some of the vector space axioms using our Z5 × Z5 example:
1. Commutativity of addition:

(2, 3) + (4, 1) = (1, 4) = (4, 1) + (2, 3)

2. Associativity of addition:

((2, 3) + (4, 1)) + (3, 2) = (1, 4) + (3, 2) = (4, 1)

(2, 3) + ((4, 1) + (3, 2)) = (2, 3) + (2, 3) = (4, 1)

3. Additive identity: The zero vector is (0, 0)

(2, 3) + (0, 0) = (2, 3)

4. Additive inverse: For (2, 3), the additive inverse is (3, 2)

(2, 3) + (3, 2) = (0, 0)

5. Distributivity of scalar multiplication over vector addition:

3 · ((2, 1) + (4, 3)) = 3 · (1, 4) = (3, 2)

3 · (2, 1) + 3 · (4, 3) = (1, 3) + (2, 4) = (3, 2)

Linear Independence and Basis in Z5 × Z5 In Z5 × Z5, the vectors (1, 0) and (0, 1) form a basis. They are
linearly independent because:

a(1, 0) + b(0, 1) = (0, 0)

implies a = b = 0 in Z5.
Every vector in Z5 × Z5 can be uniquely expressed as a linear combination of these basis vectors:

(a, b) = a(1, 0) + b(0, 1)

Subspaces of Z5 × Z5 Some examples of subspaces in Z5 × Z5 include:
1. {(0, 0)}: The trivial subspace
2. {(a, 0) | a ∈ Z5}: A one-dimensional subspace
3. Z5 × Z5 itself: The entire space

Dimension of Z5 × Z5 The dimension of Z5 × Z5 is 2, as it has a basis with two vectors. This means that any
set of three or more vectors in Z5 × Z5 must be linearly dependent.
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Algebraic Varieties

Algebraic varieties are fundamental objects in algebraic geometry, providing a geometric perspective on solutions
to systems of polynomial equations. We’ll explore their definition, types, and key properties.

Definition of Algebraic Varieties

Let k be an algebraically closed field, and let k[x1, . . . , xn] be the ring of polynomials in n variables over k.
Definition 1 (Affine Algebraic Set): For a set of polynomials S ⊂ k[x1, . . . , xn], we define the affine algebraic
set V (S) as:

V (S) = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for all f ∈ S}

Definition 2 (Algebraic Variety): An algebraic variety is an irreducible algebraic set. That is, it cannot be
written as the union of two proper algebraic subsets.
For any subset X ⊂ kn, we define the ideal of X as:

I(X) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}

Theorem 1 (Hilbert’s Nullstellensatz): For any ideal I ⊂ k[x1, . . . , xn],

I(V (I)) =
√
I

where
√
I is the radical of I.

This theorem establishes a fundamental correspondence between algebraic sets and radical ideals.

Affine and Projective Varieties

Affine Varieties An affine variety is an algebraic variety in affine space kn.
Example: The parabola y = x2 in k2 is an affine variety defined by the polynomial f(x, y) = y − x2.

Projective Varieties To define projective varieties, we first introduce projective space:
Definition 3 (Projective Space): The projective n-space over k, denoted Pn(k) or simply Pn, is defined as:

Pn = (kn+1 \ {0})/ ∼

where ∼ is the equivalence relation (x0, . . . , xn) ∼ (λx0, . . . , λxn) for any λ ∈ k∗.
A projective variety is an algebraic variety in projective space Pn.
Definition 4 (Projective Variety): For a set of homogeneous polynomials S ⊂ k[x0, . . . , xn], we define the
projective algebraic set V (S) as:

V (S) = {[a0 : . . . : an] ∈ Pn : f(a0, . . . , an) = 0 for all f ∈ S}

A projective variety is an irreducible projective algebraic set.
Example: The projective conic x2 + y2 = z2 in P2 is a projective variety.
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Coordinate Rings

The coordinate ring of an algebraic variety encodes its algebraic structure.
Definition 5 (Coordinate Ring): For an affine variety X ⊂ kn, the coordinate ring of X is:

k[X] = k[x1, . . . , xn]/I(X)

For a projective variety X ⊂ Pn, we define the homogeneous coordinate ring as:

S(X) = k[x0, . . . , xn]/I(X)

where I(X) is the homogeneous ideal of polynomials vanishing on X.

Properties of Algebraic Varieties

1. Dimension: The dimension of an algebraic varietyX is defined as the transcendence degree of its function
field k(X) over k.

2. Singular Points: A point p on a variety X is singular if the rank of the Jacobian matrix at p is less than
the dimension of X.

3. Zariski Topology: The Zariski topology on kn or Pn is defined by taking algebraic sets as closed sets. This
topology is fundamental in algebraic geometry.

4. Morphisms: A morphism between varieties X ⊂ km and Y ⊂ kn is a function ϕ : X → Y such that each
component is given by a polynomial function.
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Elliptic Curves

Definition and Basic Properties

An elliptic curve E over a field K is a smooth, projective algebraic curve of genus one, with a specified point O.
In characteristic not 2 or 3, every elliptic curve can be written in short Weierstrass form:
E : y2 = x3 + ax+ b

where a, b ∈ K, and the discriminant ∆ = −16(4a3 + 27b2) ̸= 0.

The Point at Infinity The point O, called the point at infinity, serves as the identity element for the group law.
In projective coordinates, it can be represented as [0 : 1 : 0].

Affine and Projective Representations

• Affine form: E = {(x, y) ∈ K2 : y2 = x3 + ax+ b} ∪ {O}
• Projective form: E = {[X : Y : Z] ∈ P2(K) : Y 2Z = X3 + aXZ2 + bZ3}

Group Law

Elliptic curves have an abelian group structure, with the point at infinity O serving as the identity element.

Geometric Interpretation For points P,Q on E:
1. O + P = P for all P
2. If P = (x, y), then P + (x,−y) = O (inverse)
3. To add P and Q (chord rule):

• Draw a line through P and Q
• Find the third intersection point R with E
• Reflect R across the x-axis to get P +Q

4. To double P (tangent rule):
• Draw the tangent line to E at P
• Find the second intersection point R with E
• Reflect R across the x-axis to get 2P

Algebraic Formulas For P1 = (x1, y1) and P2 = (x2, y2), P3 = (x3, y3) = P1 + P2:
If P1 ̸= P2: x3 = λ2 − x1 − x2 y3 = λ(x1 − x3)− y1 where λ = y2−y1

x2−x1

If P1 = P2: x3 = λ2 − 2x1 y3 = λ(x1 − x3)− y1 where λ = 3x2
1+a

2y1

Scalar Multiplication

For a point P on E and an integer n, scalar multiplication [n]P is defined as:
[n]P = P + P + · · ·+ P︸ ︷︷ ︸

n times

This operation is fundamental in elliptic curve cryptography.

Double-and-Add Algorithm An efficient method to compute [n]P :
1. Convert n to binary: n =

∑k
i=0 bi2i

2. Initialize Q = O
3. For i from k down to 0:

• Q = 2Q
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• If bi = 1, Q = Q+ P
4. Return Q

Elliptic Curves over Finite Fields

When the field K is finite (typically Fp or F2m), the elliptic curve E(K) forms a finite abelian group.

Order of the Curve The number of points on E(Fq), denoted #E(Fq), satisfies the Hasse bound:
q + 1− 2√q ≤ #E(Fq) ≤ q + 1 + 2√q

Structure Theorem For an elliptic curve E over Fq:
E(Fq) ∼= Z/n1Z⊕ Z/n2Z

where n1|n2 and n1|q − 1.
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Pairings

Bilinear pairings on elliptic curves are crucial for many advanced cryptographic protocols.

Weil Pairing For an elliptic curve E over Fq and a prime l|#E(Fq), the Weil pairing is a map:
e : E[l]× E[l]→ µl

where E[l] is the l-torsion subgroup and µl is the group of l-th roots of unity in F̄q.
Properties: 1. Bilinearity: e([a]P, [b]Q) = e(P,Q)ab 2. Non-degeneracy: If e(P,Q) = 1 for all Q ∈ E[l], then
P = O 3. Alternating: e(P, P ) = 1 for all P ∈ E[l]

Tate Pairing The reduced Tate pairing is a more efficient alternative to the Weil pairing:
t : E(Fqk )[l]× E(Fqk )/lE(Fqk )→ F∗

qk/(F∗
qk )l

where k is the embedding degree.
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Barreto-Naehrig (BN) Curves

Definition and Properties

Barreto-Naehrig (BN) curves are a family of pairing-friendly elliptic curves defined over a prime field Fp. They
have the following key properties:

1. Prime order: The order of the curve is a prime number n.
2. Embedding degree: k = 12
3. CM discriminant: D = 3
4. Equation form: E : y2 = x3 + b, where b ̸= 0

BN curves are particularly significant because: - They support curves of prime order, which is crucial for certain
applications and efficient implementations. - They have an embedding degree of 12, which provides a good
balance between security and efficiency for pairing-based cryptography.

Parameterization

BN curves are parameterized by a single integer x. The key parameters of the curve are defined as polynomials
in x:

1. Trace of Frobenius: t(x) = 6x2 + 1
2. Prime field order: p(x) = 36x4 − 36x3 + 24x2 − 6x+ 1
3. Curve order: n(x) = 36x4 − 36x3 + 18x2 − 6x+ 1

For cryptographic use, x is chosen such that both p(x) and n(x) are prime numbers of the desired bit-length.

Embedding Degree

The embedding degree k of a curve E over Fp with respect to a subgroup of prime order r is the smallest positive
integer k such that r|(pk − 1).
For BN curves: - The embedding degree is always k = 12. - This means that the smallest extension field Fpk that
contains the r-th roots of unity is Fp12 .
The embedding degree is crucial for pairing-based cryptography because: 1. It determines the field in which
pairing computations take place. 2. It affects the security level of the pairing-based system. 3. It influences the
efficiency of pairing computations.
For BN curves, k = 12 provides a good balance: - It’s large enough to provide sufficient security against index
calculus attacks on the discrete logarithm problem in the extension field. - It’s small enough to allow for efficient
implementation of field arithmetic in Fp12 .

Construction and Usage

To construct a BN curve for cryptographic use:
1. Choose an integer x with low Hamming weight to optimize certain operations.
2. Compute p(x) and n(x). If both are prime, proceed; otherwise, choose a different x.
3. The curve equation is E : y2 = x3 + b, where b is typically chosen to be a small integer (often 2 or 3).
4. The curve is defined over Fp, where p = p(x).
5. The order of the curve is n = n(x).
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BN254 Specifics

The curve BN254 is specified by the following parameters.

Curve generator z = 262 − 254 + 244

Prime
p = 36z4 + 36z3 + 24z2 + 6z + 1

= 21888242871839275222246405745257275088696311157297823662689037894645226208583

Curve equation
y2 = x3 + 3

Order
r = 36z4 + 36z3 + 18z2 + 6z + 1

= 21888242871839275222246405745257275088548364400416034343698204186575808495617

Embedding degree k = 12

Security

In theory, the curve has L = 128 bit security, but it was shown to now be closer to ~100. The curve also has a
prime base field of 254-bits, which is huge by our conception of what a large number is, but there are curves
with bigger primes (and thus higher security in a real way). Also, the curve as we show below has a cofactor
decomposition that require subgroup checks to avoid invalid curve or small subgroup attacks. And as always,
operations should run constant time to avoid side channel attacks.

Torsions

Let G be a group. The r-torsion of the group is defined by {x ∈ G | rX = O}, where O is the identity element
(we use the notation O to be consistent with the notation that an r-torsion on an elliptic curve group is the point
at infinity O). A great example is an analog clock, where the 12-torsion of the clock group is every hour on the
clock, since adding an hour 12 times to any hour brings you to the same time on the clock.

G1

In order to use this curve for cryptography, we need two different versions of the curve, which are then
manipulated / used by the pairings discussed earlier. The first version of the curve is the naive expectation you
have, namely the pairs of points {(x, y) ∈ Fp × Fp | y2 = x3 + 3}. This is almost right what we need! We add
one more condition though that the group we want to deal with is actually the smallest prime cyclic subgroup of
order r. Therefore, the group we want to deal with is actually the r-torsion of this elliptic curve group:

G1 ≜ E(Fp)[r] is the only subgroup of the r-torsion of E on Fp of order r
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Membership check forG1 In our scheme, to hash amessage toE, we use hash_to_field and field_to_curve,
and then multiply the mapped curve point by the generator of the curve to create a point in G1. Fortunately, by
Theorem 2.3.1 of Silverman, we have

|E(Fp)| = p+ 1− t

and for BN curves generated by a value z = 262 − 254 + 244, we have p(z) + 1 − t(z) = r(z), implying that
|E(Fp)| = r =⇒ G1 = E(Fp)[r] = E(Fp)! In this way, since r-torsions give us some notion of structure, this
means that the “prime factorization” of the curve is simply the curve itself, so its smallest possible prime order
subgroup is just the group, no extra structure to be found.
We therefore only need to check if a pair (x, y) ∈ Fr × Fr is on the curve E(Fp) for membership in G1.

G2

We now need a second version of the curve G2 such that |G1| = |G2| = r, which requires us to now go to Fp12 .
Why?
Well, we’re technically dealing with not the entire EC group, but the cyclic subgroup ⟨X⟩ generated by the point
X which is the base of our DL problem (ie Xd ≡ Y =⇒ [d]X = Y ). The embedding process (aka taking points
from G1 and map them into Fpm) is done by the pairing e(x, y) which, for a point x in the n-order subgroup of
the curve, will be an n-th root of unity for some y, required by the condition that e(ax, by) = e(x, y)ab. In order
for this to hold, there must be enough roots of unity in the field, which happens when pk ≡ 1 mod ℓ, where ℓ is
the order of the cyclic subgroup. For us, this is k = 12, so the embedding must go from the curve to Fp12 .
We need to deal with this massive extension for the pairing operation because the curve defined over this
extension is the smallest extension which contains subgroups of order r that we can use for pairings, one
subgroup in which contains only points with zero trace, which we choose to be G2.
So we have G1 ⊂ E(Fp) with |G1| = r, and G2 ⊂ E(Fp12) with |G2| = r which we want to use for our pairing.
Recall that given an irreducible polynomial N ∈ Fp[x] of degreem = 12, the elements of this extension are those
given by {am−1x

m−1 + · · ·+ a1x+ a0 | ai ∈ Fp}

Multiplication is defined by multiplying the two polynomials, then using polynomial long division on the
polynomial N to get the remainder, and inverses are defined via the extended euclidean algorithm.
You can “tower” extensions if the order of one divides the order of the other, so if mj |mj+1, then Fp ⊂ Fpm1 ⊂
· · · ⊂ Fpmk .
The standard tower for BN254 is given by the following (see here or here):

Fp2 = Fp[u]/(u2 − β) (1)
Fp6 = Fp2 [v]/(v3 − ξ) (2)
Fp12 = Fp6 [w]/(w2 − v) (3)

where β is a quadratic nonresidue in Fp and ξ neither a quadratic or cubic residue in Fp⊭ , which amounts
to saying that X6 − ξ is irreducible in the ring Fp2 [X]. Here, β = −1, ξ = 9 + u, which brings about
u2 = −1, w2 = v, v3 = 9 + u, and therefore:

Fp12 = Fp2 [w]/(w6 − (9 + u))

This brings about the following nice points - any element in this extension can be written as g + hw with
g, h ∈ Fp6 , which means that the p6-th power of any element in the extension xp6 = g − hw is free to compute -
Likewise writing each g, h in terms of coefficients from Fp2 lets you compute the p-th, p2-th, and p3-th powers
easily as well
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Dealing with elements directly in Fp12 is very unruly and inefficient, but it is possible to define a coordinate
transformation such that such that the curve in the 12-th order extension is mapped to a lower degree field.
For BN254, we define a sextic twist (aka drops the degree of extension by 6) such that the twisted curve is
defined on Fp2 instead of Fp12 . Defining u6 = (1 + i)−1, the twist performs (x, y)→ (x/u2, y/u3) to produce
our new curve E′(Fp2):

y′2 = x′3 + 3
9 + i

Very nice. Note though that points in E(Fp) are pairs of ints, while points on the twist are pairs of complex ints,
so points in G2 take more storage despite them being also valid as the domain for keys and signatures.
See this for industry definition of this twist.
Since X6 − ξ is irreducible, with roots w ∈ Fp12 , we therefore have a homomorphism

Ψ : E′(Fp2)→ E(Fp12) ; (x′, y′) = (w2x′, w3y′)

which is injective, but not surjective, and defines the twist mapping!
Recalling that the r-torsion points of a curve are all the points X such that rX = O, with O the point at infinity,
ie these are all points of order dividing r, we finally define

• G2 ≜ E′(Fp2)[r] is the only subgroup of the r-torsion of E′ on Fp2 of order r

membership check in G2

First, recall that there is a mapping ϕp : E(Fp)→ E(Fp); (x, y)→ (xp, yp) called the Frobenius morphism. It
can can be shown that the set of points fixed by ϕ are exactly the finite group E(Fp), so application of this
mapping to the curve defined on the base field will leave things structurally unchanged. This mapping will crop
back up later in our definition of optimal ate pairing.
Now, actually checking membership is a bit trickier. You can check easily if the point (x, y) ∈ Fp2 × Fp2

lies on E′(Fp2), but unfortunately the order of the twist curve is not given by the order of the r-torsion, ie
|E′(Fp2)| = c2r, where c2 is the G2 cofactor. You can show that c2 = p+ t− 1. Thinking about r-torsions as
structure again, it makes sense that this is the case even just from the consideration of the total number of
elements in the preimage of G2 (Fp2 × Fp2) vs G1 (Fp); with that many more elements to consider, it makes
sense that there is additional structure in the group to now deal with.
You can just rely on the definition of the r-torsion if you want to check if [r](x, y) = O, but with 254 bits of r, this
is slooooooow.
Faster algorithms exist. For instance, defined the untwist-Frobenius-twist endomorphism of Galbraith-Scott:

ψ : E′(Fp2)→ E′(Fp2) = Ψ−1 ◦ ϕp ◦Ψ ; (x′, y′)→ (ξ(p−1)/3x′p, ξ(p−1)/2y′p)

where Ψ is the twist mapping, and recall ξ = 9 + u. Membership in G2 therefore boils down to verifying if the
following holds: Q = (x′, y′);ψ(Q) = [6x2]Q, and more recent work improves this to the following:

[x+ 1]Q+ ψ([x]Q) + ψ([x]Q) = ψ3([2x]Q)

You can go even further too.

30

https://eips.ethereum.org/EIPS/eip-197
https://link.springer.com/book/10.1007/978-0-387-09494-6
https://hackmd.io/@jpw/bn254#mathbb-G_2-order
https://eprint.iacr.org/2008/117.pdf
https://eprint.iacr.org/2022/352.pdf
https://eprint.iacr.org/2022/348.pdf
https://eprint.iacr.org/2022/352.pdf


BN254 with Thresholding

We want to be able to perform signature verification on a hashed message. However, if we only have a single
entity producing a signature, we require trust that they are honest, which is a hard requirement since they
are indivudually responsible for the integrity of the signature. To circumvent this, we produce a threshold
signature scheme, specifically what is known as a (t, n)-thresholding scheme. This means that out of a council of
n participants, any quorum of t valid partial signatures guarantees validity of the final signature. This allows for
a decentralized signaturing, fault tolerance, and validation and verification of and by participants.

Signature schemes

There are a few signatures schemes. I will mention by name, but not go into the details. There are many
schemes that produce many valid signatures (DSA, ECDSA, Schnorr), but we want a single valid signature. We
therefore start with the Boneh-Lynn-Shacham (BLS) signature scheme, which is pretty ubiquitous.

Key generation First choose x ∼ U(0, p) ∈ Fp to be the random key, the holder of which generates a public
key gx with g a generator of Fp.

Signing Given a message m, hash it to the target group to produce H(m), and return a signature on the hash
σ = xH(m)

Verificiation Assert that e(σ, g) = e(H(m), gx), where e is a pairing function.
We discuss all of these in detail, as well as the extension to distributed usage among n participants.

Contents

Step 0: Roadmap
Step 1: Generate field scalars
Step 2: Generate partial private shares
Step 3: Create public polynomial
Step 4: partial signaturing
Step 5: partial verification
Step 6: aggregation
Step 7: final verify

tl;dr

There are a lot of good partial implementations of everything in this document. my recommendation is to start
with seda’s barebones of bn254 and the pairing library here to create our skeleton. These two libraries have
minimal external dependencies, and are lightwight renditions of the functionality. We then take the thresholding
logic of threshold_bls for the partial signature generation and aggregation, etc. (all of its curve logic is imported
from external crates so I don’t recommend starting off with this).
The biggest issue in these existing repos is the security concerns regarding the hash_to_field and
field_to_curve functions, which are only implemented with naïve algorithms in these repos. Fortunately,
there is a clear guide to developing secure elliptic curve suites created by cloudflare called RFC 9380 which
specifies very clearly, with example algorithms, references, and precise language, how to remedy these issues,
and what algorithms to use for which curves, security levels, etc.
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There are implementations by arkworks and zkcrypto/bls12_381. Arkworks unfortunately is extermely bloated
and very massive for something that only provides the elliptic curve logic, and zkcrpto/bls12_381 is the wrong
curve. However, arkworks is a good reference for our friendly bn254, and zkcrypto/bls12_381 conforms to
security standards set out in RFC9380, so they should be good references while we build our product.

Step 0: Roadmap

For the BN254 curve, there are two groups we will deal with often.

G1 ⊂ E(Fr) with E the curve

• This is the group of points on the base curve in short Weierstrass form y2 = x3 + 3 defined over the field Fr

G2 ⊂ E′(Fr2) with E′ the sextic twist of the curve

• This is the group of points on the twisted curve defined over the quadratic extension field Fr2 , defined by
y2 = x3 + 3

i+9

1. Generate scalars {a0, . . . , at−1} in the field Fr

a. These define private key polynomial coefficients
2. Generate partial key shares by evaluating the polynomial for n shares, making sure to never evalaute at 0

a. This creates partial priate keys si ∈ Fr

3. Commit the private polynomial to G2 to create the public key polynomial
a. Define A : Fr → G2 : x→ xg2, and apply to polynomial, namely ai → A(ai) = aig2
b. The group public key is the evalution of the public key polynomial at 0 ∈ Fr, namely a0g2

4. Each node i will now create a partial signature
a. First, hash message m into Fr

b. Second, take the hash and map it to the curve, generating H(m) ∈ G1
c. Thirdly, create the partial signature by multiplying by the partial key share si ∈ Fr by the hash,
σi = siH(m) ∈ G1

5. Verify the partial signatures against the public polynomial
a. Now having the hash on the curve H(m), and the partial signature σi, we first evaluate the public

polynomial P (x) = a0g2 + a1g2x+ · · ·+ at−1g2x
t−1 at each index i

b. We then use the pairing function to verify e(σi, g2) = e(H(m), P (i))

6. Aggregate the participants and their partial signatures to recover the public polynomial constant term, aka
pub key a0g2, via generation of total signature σ

7. Use same methodology as step 5 to verify the final signature e(σ, g2) =
∏

i e(H(m), P (i))

Step 1: generate field scalars

Listing 1: Generate s ∈ Fr

use rand::Rng;

#[derive(Debug, Clone, Copy)]
pub struct Scalar([u64; 4]);
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impl Scalar {
// The modulus q of BN254 curve
const MODULUS: [u64; 4] = [

0x43e1f593f0000001,
0x2833e84879b97091,
0xb85045b68181585d,
0x30644e72e131a029,

];

// Rˆ2 mod q (used for conversion to Montgomery form)
const R2: [u64; 4] = [

0x1bb8e645ae216da7,
0x53fe3ab1e35c59e3,
0x8c49833d53bb8085,
0x0216d0b17f4e44a5,

];

// Generate a random Scalar
pub fn random() -> Self {

let mut rng = rand::thread_rng();
let mut limbs = [0u64; 4];

loop {
for i in 0..4 {

limbs[i] = rng.gen();
}

// Ensure the generated number is less than the modulus
if !Self::is_above_modulus(&limbs) {

break;
}

}

// Convert to Montgomery form
Self::to_montgomery_form(&limbs)

}

// Check if the generated number is above or equal to the modulus
fn is_above_modulus(limbs: &[u64; 4]) -> bool {

for i in (0..4).rev() {
if limbs[i] > Self::MODULUS[i] {

return true;
}
if limbs[i] < Self::MODULUS[i] {

return false;
}

}
true

}

// Convert to Montgomery form
fn to_montgomery_form(limbs: &[u64; 4]) -> Self {
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let mut result = [0u64; 4];
Self::montgomery_multiply(limbs, &Self::R2, &mut result);
Scalar(result)

}

// Montgomery multiplication
fn montgomery_multiply(a: &[u64; 4], b: &[u64; 4], result: &mut [u64; 4]) {

let mut t = [0u64; 8];

// Multiply
for i in 0..4 {

let mut carry = 0u64;
for j in 0..4 {

let mut product = (a[i] as u128) * (b[j] as u128) + (t[i + j] as u128) + (carry as u128);
t[i + j] = product as u64;
carry = (product >> 64) as u64;

}
t[i + 4] = carry;

}

// Reduce
let mut carry = 0u64;
for i in 0..4 {

//rando num below is INV=(-qˆ{-1}mod 2ˆ64)mod 2ˆ64
//its giving fast inv square root vibes
let k = t[i].wrapping_mul(0xac96341c4ffffffb);
let mut sum = (t[i] as u128) + (k as u128) * (Self::MODULUS[0] as u128) + (carry as u128);
carry = (sum >> 64) as u64;
for j in 1..4 {

sum = (t[i + j] as u128) + (k as u128) * (Self::MODULUS[j] as u128) + (carry as u128);
t[i + j - 1] = sum as u64;
carry = (sum >> 64) as u64;

}
t[i + 3] = carry;
carry = 0;

}

result.copy_from_slice(&t[4..8]);

// Final reduction
if Self::is_above_modulus(result) {

let mut borrow = 0i64;
for i in 0..4 {

let diff = (result[i] as i128) - (Self::MODULUS[i] as i128) - (borrow as i128);
result[i] = diff as u64;
borrow = if diff < 0 { -1 } else { 0 };

}
}

}
}

Many implementations exist. Best ones so far I’ve found that could add rto the barebones scalar above have
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montgomery arithmetic added. Consider this and that.

Step 2: generate partial private shares

Listing 2: evaluate private polynomial at each index

#[derive(Debug, Clone, Serialze, Deserialize)]
pub struct Eval<A> {

pub idx: u32;
pub val: A

}
let (n, t) = (10, 6);
let coeffs: Vec<Scalar> = (0..t).map(|_|Scalar::random()).collect();

//eval polynomial f(i), but never for i=0 since that exposes the secret
let private_shares = (0..n).map(|i| {

coeffs.iter().rev().fold(Scalar::zero(), |mut sum, coeff| {
sum.mul(i+1);
sum.add(coeff);
Eval<Scalar> {

idx: i+1,
value: sum

}
}

}).collect::<Vec<_>>();
//put in eval struct or something for clarity / serialization later

Great. Now we have evaluated the polynomial f(x) = a0 + a1x+ · · ·+ at−1x
t−1. Now we get to the fun stuff

Step 3: create public polynomial

First, we need to commit the scalar polynomial generated above to the group to get polynomial on the group, aka
multiply each coeff by the generator. We call it committing because of the close connection to KZG polynomials
in SNARKS (a good blog on it is here).
all of arkworks-rs, zkcrypto/bls12_381, an threshold_bls implement a struct specifically mapping a Scalar of the
field to point on G2

let public_polynomial_g2_coeffs = coeffs.iter().map(|c|{
let mut commit = <cofactor of G2>;
commit.mul(c);
commit

}).collect::<Vec<<stuct of points on the field>>>();

then BAM, we get the public key for “free” since its just the constant term of the polynomial
let pub_key:<stuct of points on the field> = public_polynomial_g2_coeffs[0];

We place the public key as an element of G2. Why? - prevents rogue key attacks, since more complex structure
makes it harder to generate fake pub keys - subgroup structure is more complex, so harder to cofactor clear -
allows for optimizations in the pairing equation
Also, note that in order to get an element of G2 we multiply by the cofactor, see membership checks. The
problem is really that this cofactor is huge:
//|E'(F_{pˆ2})| =
//479095176016622842441988045216678740799252316531100822
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//436447802254070093686356349204969212544220033486413271
//283566945264650845755880805213916963058350733
c_2 = 21888242871839275222246405745257275088844257914179612981679871602714643921549

so there are faster ways to generate an element in G2, for example this. ### Step 4: partial signaturing ok,
great. c’est parti à la lune . we now need to partial sign messages. this is distributed obvs in our case, but for
here it’d be nice to have something like
let partials_sigs_g1 = private_shares.iter().map(|s| bn254::partial_sign(s, &msg));

but what does this actually entail? this is the good stuff.

Choose an upper bound on the target security level k, a reasonable choice of which is ⌈log2(r)/2⌉

Define a hash_to_field function to take byte strings to field From RFC 9380, >To control bias, hash_to_field
instead uses random integers whose length is at least ⌈log2(p)⌉+ k bits, where k is the target security level for
the suite in bits. Reducing such integers mod p gives bias at most 2ˆ-k for any p; this bias is appropriate when
targeting k-bit security. For each such integer, hash_to_field uses expand_message to obtain L uniform bytes,
where L = ⌈(⌈log2(p)⌉+ k)/8⌉. These uniform bytes are then interpreted as an integer via OS2IP. For example,
for a 255-bit prime p, and k = 128-bit security, L = ceil((255 + 128) / 8) = 48 bytes.
More on this later.

Define a field_to_curve function to take field element to G1

First, we need a way to take a message and hash it to an element of the field, so we use . . .

Listing 3: “try and increment” algorithm for hashing onto Zn Require: n ∈ Z with |n|_2 = k and s ∈ {0,1}*
procedure Try-and-Increment(n, k, s)

c ← 0
repeat

s’ ← s || c_bits()
z ← H(s’)_0 · 2ˆ0 + H(s’)_1 · 2ˆ1 + . . . + H(s’)_k · 2ˆk
c ← c + 1

until z < n
return z

end procedure
Ensure: z ∈ Z_n
possible impl here
tl;dr try-and-increment : {0, 1}∗ → Zr;m2 → mZr

≃ mFr
, which is what is given in moon math manual.

This seems easy enough, but would fail security audits. We should implement a more rigorous method for a
given level of security, which for us is 128-bit. An example might be expand_message_xmd specified again by
RFC 9380, an example impl of which could be:
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Listing 4: expand_message_xmd for hash_to_field

use sha2::{Sha256, Digest};
use num_bigint::BigUint;
use num_traits::Num;

const B_IN_BYTES: usize = 32; // 256 bits for SHA-256
const S_IN_BYTES: usize = 64; // Input block size for SHA-256
const L: usize = 48; // ceil((254 + 128) / 8) = 48 bytes

const P: &str = "21888242871839275222246405745257275088696311157297823662689037894645226208583";
fn expand_message_xmd(msg: &[u8], dst: &[u8], len_in_bytes: usize) -> Vec<u8> {

let ell = (len_in_bytes + B_IN_BYTES - 1) / B_IN_BYTES;

assert!(ell <= 255, "ell is too large");
assert!(len_in_bytes <= 65535, "len_in_bytes is too large");
assert!(dst.len() <= 255, "DST is too long");

let dst_prime: Vec<u8> = [dst, &(dst.len() as u8).to_be_bytes()].concat();
let z_pad = vec![0u8; S_IN_BYTES];
let l_i_b_str = (len_in_bytes as u16).to_be_bytes();

let msg_prime: Vec<u8> = [
&z_pad[..],
msg,
&l_i_b_str,
&[0u8],
&dst_prime[..]

].concat();

let mut b_0 = Sha256::digest(&msg_prime);
let mut b_1 = Sha256::digest(&[&b_0[..], &[1u8], &dst_prime[..]].concat());

let mut uniform_bytes = b_1.to_vec();

for i in 2..=ell {
let b_i = Sha256::digest(

&[
&xor(&b_0, &b_1)[..],
&[i as u8],
&dst_prime[..]

].concat()
);
uniform_bytes.extend_from_slice(&b_i);
b_1 = b_i;

}

uniform_bytes.truncate(len_in_bytes);
uniform_bytes

}

fn xor(a: &[u8], b: &[u8]) -> Vec<u8> {
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a.iter().zip(b.iter()).map(|(&x, &y)| x ˆ y).collect()
}

fn i2osp(x: usize, len: usize) -> Vec<u8> {
x.to_be_bytes()[std::mem::size_of::<usize>() - len..].to_vec()

}

fn hash_to_field(msg: &[u8], dst: &[u8]) -> BigUint {
let uniform_bytes = expand_message_xmd(msg, dst, L);
let mut integer = BigUint::from_bytes_be(&uniform_bytes);
let p = BigUint::from_str_radix(P, 10).unwrap();
integer %= &p;
integer

}

Now having the message in the field, we need to map it to G1, aka a pair of (x, y) ∈ E(Fr)

It seems the nicest would be the Simplified Shallue-van de Woestijne method. I won’t waste time on this one
unfortunately, because despite there being an existing impl of this, it requires that in its short affine Weierstrass
form that A ̸= 0 and B ̸= 0, so we instead present the full . . .

Shallue-van de Woestrijne method Needed constants: - A=0, B=3 for bn254 - Z ∈ Fr such that - for
y2 = g(x) = x3 + Ax + B, g(Z) ̸= 0 in the field - − 3Z2+4A

4g(Z) ̸= 0 in the field - ALSO this quantity must be a
square in the field - At least one of g(Z) and g(−Z/2) is square in the field

Listing 5: A sage script to find such a Z

# Arguments:
# - F, a field object, e.g., F = GF(2ˆ521 - 1)
# - A and B, the coefficients of the curve yˆ2 = xˆ3 + A * x + B
def find_z_svdw(F, A, B, init_ctr=1):

g = lambda x: F(x)ˆ3 + F(A) * F(x) + F(B)
h = lambda Z: -(F(3) * Zˆ2 + F(4) * A) / (F(4) * g(Z))
# NOTE: if init_ctr=1 fails to find Z, try setting it to F.gen()
ctr = init_ctr
while True:

for Z_cand in (F(ctr), F(-ctr)):
# Criterion 1:
# g(Z) != 0 in F.
if g(Z_cand) == F(0):

continue
# Criterion 2:
# -(3 * Zˆ2 + 4 * A) / (4 * g(Z)) != 0 in F.
if h(Z_cand) == F(0):

continue
# Criterion 3:
# -(3 * Zˆ2 + 4 * A) / (4 * g(Z)) is square in F.
if not is_square(h(Z_cand)):

continue
# Criterion 4:
# At least one of g(Z) and g(-Z / 2) is square in F.
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if is_square(g(Z_cand)) or is_square(g(-Z_cand / F(2))):
return Z_cand

ctr += 1

LOL all this to show that for BN254, Z = 1 ∈ Fr . . .
Using the notation and utility functions from here, I summarise the SvW algorithm for input u ∈ Fr.
Note that the constant c3 below MUST be chosen such that sgn0(c3) = 0. In other words, if the square-root
computation returns a value cx such that sgn0(cx) = 1, set c3 = -cx; otherwise, set c3 = cx.
Constants: 1. c1 = g(Z) 2. c2 = −Z/2 3. c3 =

√
−g(Z) ∗ (3Z2 + 4A) # sgn0(c3) MUST equal 0 4.

c4 = −4g(Z)/(3Z2 + 4A)

Listing 6: the SvW algorithm A : Fr → Fr × Fr

tv1 = uˆ2;
tv1 = tv1 * c1;
tv2 = 1 + tv1;
tv1 = 1 - tv1;
tv3 = tv1 * tv2;
tv3 = inv0(tv3);
tv4 = u * tv1;
tv4 = tv4 * tv3;
tv4 = tv4 * c3;
x1 = c2 - tv4;
gx1 = x1ˆ2;
gx1 = gx1 + A;
gx1 = gx1 * x1;
gx1 = gx1 + B;
e1 = is_square(gx1);
x2 = c2 + tv4;

gx2 = x2ˆ2;
gx2 = gx2 + A;
gx2 = gx2 * x2;
gx2 = gx2 + B;
e2 = is_square(gx2) AND NOT e1 // Avoid short-circuit logic ops;
x3 = tv2ˆ2;
x3 = x3 * tv3;
x3 = x3ˆ2;
x3 = x3 * c4;
x3 = x3 + Z;
x = CMOV(x3, x1, e1) // x = x1 if gx1 is square, else x = x3;
x = CMOV(x, x2, e2) // x = x2 if gx2 is square and gx1 is not;
gx = xˆ2;
gx = gx + A;
gx = gx * x;
gx = gx + B;
y = sqrt(gx);
e3 = sgn0(u) == sgn0(y);
y = CMOV(-y, y, e3); // Select correct sign of y

return (x, y)

Then poof! We have the following procedure:
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1. Hashing to element of the field: use listing 4 to convert the bits of the message to an integer of desired
size and field via try-and-increment
a. hash_to_field : {0, 1}∗ → Fr;m2 → mFr

2. Hashing element of the field to the curve: use listings 5-6 to then map hashed message to the curve!
a. field_to_curve : Fr → G1;mFr → H(m)

3. Signing of the hash: now, take the hash and sign it with the partial private key of this node
a. σi : G1 → G1;H(m)→ siH(m) with si the partial private key ∈ Fr from step 2

Each participant has now signed the hashed message to the curve.

Step 5: partial verification

This is pretty straightforward up to deciding how to implement the pairing function. . . . which is . . . easy . . .
right? Wrong. See ‘Field extentions’ for the clusterfuck that is pairing maths.
let public_polynomial_per_share = (0..n).map(|i| {

public_polynomial_g2_coeffs.iter().rev().fold(Scalar::zero(), |mut sum, coeff| {
sum.mul(i+1);
sum.add(coeff);
Eval<Scalar> {

idx: i+1,
value: sum

}
}

}).collect::<Vec<_>>(); //these are the values of public poly we'll use for verification
let all_verified = (0..n).map(|i|{

let lhs = pairing(partials_sigs_g1[i], <generator of g_2>);
let rhs = pairing(<hash to be saved from previous calculation>, public_polynomial_per_share[i])
lhs == rhs

}).sum() == n - 1;

Step 6: Aggregation

First, get lagrange coeffs λi to recombine the partial signatures
fn lagrange_coefficient(i: usize, indices: &[usize]) -> Scalar {

let x_i = Scalar::from(i as u64);
indices.iter().filter(|&&j| j != i).fold(Scalar::one(), |acc, &j| {

let x_j = Scalar::from(j as u64);
acc * (x_j * (x_j - x_i).inverse().unwrap())

})
}

Then, we can aggregate the signatures to create σ =
∑

i λiσi

fn aggregate_signatures(partial_sigs: &[(usize, <point in G1>)]) -> <point in G1> {
let indices: Vec<usize> = partial_sigs.iter().map(|&(i, _)| i).collect();

partial_sigs.iter().map(|&(i, sig)| {
let lambda_i = lagrange_coefficient(i, &indices);
sig.mul(lambda_i)

}).sum()
}
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In reality we don’t need all partials (handle edge cases, plus verify each partial individual first for data integrity,
etc)

Step 7: Final verify

Use same code as step 5 to verify the final signature σ.
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optimal ate pairing

finally, we’re here!! fuck.
There are many choices here, and I’m only choosing one (the “best” one), but the motivation for this I won’t go
into here. There is a great outline of the many types of pairings here, in one of the orignal manuscripts on the
subject.
So our goal here is to take a point X ∈ G1 = E(Fp), and a point Y ∈ G2 ⊂ E′(Fp12), and map them to a point
in a target group GT ⊂ Fp12 , denoted by the map e, and corresponds qualitatively to multiplying a point in G1
by a point in G2.
We need bilinearity, therefore requiring:

e([a]X, [b]Y ) = e(X, [b]Y )a = e(X,Y )ab = e(X, [a]Y )b = e([b]X, [a]Y )

The “best” way to create this e is the “optimal ate pairing”, which has an excellent guide for high speed calculations
in software.
Before we dig into the pairing itself, we need to know how to define a line passing through two points on the twisted
curve, and what the line is evaluated at a point on the curve. Specifcally, R1 = (x′

1, y
′
1), R2 = (x′

2, y
′
2) ∈ E′(Fp2),

and T = (x, y) ∈ E(Fp), we have the line ℓ defined as:

ℓΨ(R1),Ψ(R2)(T ) =
{
w2(x′

2 − x′
1)y + w3(y′

1 − y′
2)x+ w5(x′

1y
′
2 − x′

2y
′
1) R1 ̸= R2

(3x′3 − 2y′2)(9 + u) + w3(2yy′) + w4(−3xx′2) R1 = R2

Armed with this knowledge, we now can define the optimal ate pairing e : G1 ×G2 → GT to be:

e(X,Y ) =
(
f6z+2,Y (X) (4)

×ℓ[6z+2]Ψ(Y ),ϕp(Ψ(Y ))(X) (5)

×ℓ[6z+2]Ψ(Y )+ϕp(Ψ(Y )),−ϕp(Ψ(Y ))(X)
) p12−1

r

(6)

now THATS a mouthful, say that 5 times fast. Here, z is the parameter of the curve. The pairing is based on
rational functions fi,Q : N×G2 → Fp12 that are evaluated iteratively in what’s called Miller’s algorithm.
Fantastically, the paper that describes this process was never published, but the algorithm, the imeplementation
of which is refered to as “Miller’s loops”, says that:

fi+j,Y = fi,Y fj,Y ℓ[i]Ψ(Y ),[j]Ψ(Y )

TECHNICALLY there is another factor in the denominator of these iterations that describes the evaluation of
the point Ψ(Y ) on the vertical line passing through X. However, we can ignore this evaluation, for reasons
summarized well by this:
To compute a Tate pairing, a quotient is iteratively calculated (Miller’s algorithm) and then raised to power of
(pk − 1)/r, the Tate exponent. Each factor of the denominator is the equation of a vertical line evaluated at a
particular point, i.e. the equation X − a evaluated at some point (x, y), which gives the factor (x− a).
Because of the way we have selected our groups, x ∈ Fpd , (note that the map Ψ leaves the x-coordinate of its
input in the same field), and a ∈ Fp, hence (x− a) ∈ Fpd .

42

https://eprint.iacr.org/2008/096.pdf
https://eprint.iacr.org/2010/354.pdf
https://eprint.iacr.org/2010/354.pdf
https://crypto.stanford.edu/miller/miller.pdf
https://crypto.stanford.edu/pbc/notes/ep/optimize.html


Any element a ∈ Fpd satisfies apd−1. Observe pd−1 divides (pk−1)/r, because r cannot divide pd−1 (otherwise
d would be the embedding degree, not k). Thus each factor (x− a) raised to the Tate exponent is 1, so it can be
left out of the quotient. Hence, there is no need to compute the denominator at any time in Miller’s algorithm.
Slick.

Toy implementation

In decimals, we know z = 4965661367192848881, and therefore 6z + 2 = 29793968203157093288. Optimised
implementations represent this bound in {−1, 0, 1} basis, not binary, since it has a lower Hamming weight, just
fyi, so in that case we get the following.
There will be miller’s loop to determine the first term in the optimal ate pairing. Then for the final two terms,
we notice that:

ℓ[6z+2]Ψ(Y ),ϕp(Ψ(Y ))(X) Notice that:

ϕp(Ψ(Y )) =
(
(w2x′)p, (w3y′)p

)
=
(
w2ξ(p−1)/3x′p, w3ξ(p−1)/2y′p

)
= Ψ

(
ξ(p−1)/3x̄′, ξ(p−1)/2ȳ′

)
Since [n]Ψ(Q) = Ψ([n]Q) by the homomorphism, we just evaluate the line now at the point
Q′ = (ξ(p−1)/3x̄′, ξ(p−1)/2ȳ′) = (x1, y1).

ℓ[6z+2]Ψ(Y )+ϕp(Ψ(Y )),−ϕp(Ψ(Y ))(X) You can likewise show that this is easily evaluated at the point −Q.
fn e(p: &G1Affine, q: &G2Affine) -> Fq12 {

//membership checks, see sections above
assert!(p.is_in_g1());
assert!(q.is_in_g2());

if p.is_identity().into() || q.is_identity.into() {
return Fq12::One();

}

let mut r = *q;
let mut f = Fq12::One(); //starting point of iteration

//begin miller's loop, calculating f_{[6z+2],q}(p)
for i in (0..BOUND.len() - 1).rev() {

f = f * f * line(twist(&r), twist(&r), p);
r = r.double();
match BOUND[i] {

1 => {
f = f * line(untwist(&r), untwist(q), p);
r.add_assign(q);

},
-1 => {

f = f * line(untwist(&r),untwist(-q), p);
r.sub_assign(q);

},
0 => {},
_ => panic!("digit not in correct basis")

}
}
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let qp = q.frobenius_map();
f = f * line(twist(&r), twist(&qp), p);
r.add_assign(qp);
let qpp = -qp.frobenius_map();
f = f* line(twist(&r), twist(&qpp), p);

final_exponentiation(&f)
}
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Final exponentiation

Arguably, this is the most computationally expensive step since the bit size of the exponent in the pairing is huge,
so the naïve approach would be silly. I mean, there are issues with the G2 cofactor clearing to create elements in
G2 from the field because of the size of the cofactor, so if multiplication is slow, exponentiation is not guaranteed
to be better a priori.
The following takes the lead from this and that.
The most efficient calculation of these pairings relies on notions of cyclotomic subgroups. oof.
Up until this point, we were precise in our definitions of G1 and G2, but have been unclear about what exactly
the target group of the pairing should be. We now formally define the target group GT to be the group of r-th
roots of unity over the multipicative group F∗

pk = (Fpk/{0}, ∗), denoted commonly by µr. Why the roots o f
unity? Great question. Remember that this mapping has to satisfy a few key real-world properties. First, it
has to be a trapdoor, namely preimage resistance (assuming DL hardness), and mapping backwards from the
roots of unity is a very difficult problem. Second, it allows for an easy metric against which we can compare two
mappings. For example, in the case of signature verification e(σi, g2) = e(H(m), P (i)), it is very natural to want
to set the actual value of each side of this equation to “one”, therefore implying the image domain to be the
roots of unity. Note that this implies right away that |G1| = |G2| = |GT | = r, which makes the pairing retain the
correct group structure while still mapping to a cryptographically secure image, aka a group of “ones”.
In the following, let (F∗

pk )r is the subgroup of r-th powers, namely all elements in F∗
pk that are expressed as xr

for some x. We can then define the quotient group F∗
pk/(F∗

pk )r which represent the coset of r powers, namely
each element in this quotient group differ by a power of r.

Note that ∀x ∈ F∗
pk ,
(
x

pk−1
r

)r

= xpk−1 = 1, which means elements of the form x
pk−1

r ∈ F∗
p/(F∗

p)r, which is
precisely what the pairing function e does. There is a natural isomorphism between the quotient group and the
roots of unity, so we can equivalently talk about either. For the purposes of the following, however, we’ll keep to
the quotient group representation since it admits a few additional insights we can use to our advantage.

Aside: this is not a light topic to cover, even for the level of depth in this document (hard to believe, I know), but
is a result from Galois theory and the so called Kummer theorems, see this

Since the optimal ate pairing is mapping our “multiplication” of an element from G1 and an element from G2 to
the group of roots of unity by means of exponentiation of an element from the base field extension Fp12 , it would
be useful to represent our exponent (p12 − 1)/r in a form closer related to the roots of unity to which we’re
mapping. To do this, we define what’s called the cyclotomic polynomial, defined by an order n. This polynomial
contains all of the irreducible factors of xn− 1 (which defines the roots of unity), and is therefore the polynomial
whose roots are the roots of unity. In this sense, this polynomial captures all of the structure of the roots of unity,
and because of its irreducibility, we can use it to build other mappings that deal with the group of roots of unity.
Specifically, we define the k-th cyclotomic polynomial Φ(x) to be:

pk − 1
Φk(p) =

∏
j|k,j ̸=k

Φj(p)

which allows us to break down the exponent of the “final exponentiation” step. Writing the embedding degree
k = ds, where d is a positive integer, we can write:

pk − 1
r

=
[

(ps − 1) ·
∑d−1

i=0 p
is

Φk(p)

]
︸ ︷︷ ︸

easy part

·
[
Φk(p)
r

]
︸ ︷︷ ︸
hard part
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Easy part

For BN254, this decomposes the easy part into (p6−1)(p2 +1) for k = 12 (note that we choose this decomposition
because exponentiation by powers of p are very efficient, see the discussion earlier). The easy part will involve
something like xp6−1 = xp6 · x−1, which is one conjugation, one inversion, and one multiplication (remember
that conjugation in Fp12 for an element x = a+ bw is simply x̄ = a− bw). Then taking

(
xp6−1

)p2

is just applying
our Frobenius morphism ϕ, and then finally we multipy by our already-computed value xp6−1, and voila!
Easy part = 1 conjugation + 1 inversion + 1 multiplication + 5 multiplications + 1 multiplication

Hard part

For BN254, the hard part decomposes into p4−p2+1
r . It seems that the typical way to go here is to take a base-p

expansion, namely defining λ ≜ mφk(p)/r with r ∤ m, and finding a vector τ of w+ 1 integers τ = (λ0, . . . , λw)
such that λ =

∑
λip

i minimizing the L1-norm of τ . Recall that for us:

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1

t(z) = 6z2 + 1

so substituting these into the hard part of the polynomial as a function of the curve family generator z yields
λ3p

3 + λ2p
2 + λ1p+ λ0 with:

λ3(z) = 1

λ2(z) = 6z2 + 1

λ1(z) = −36z3 − 18z2 − 12z + 1

λ0(z) = −36z3 − 30z2 − 18z − 2

We now then compute the hard part as a series of multiplications in terms of powers of the easy part.
1. Compute fz

easy, (fz
easy)z, (fz2

easy)z

2. Use the Frobenius operator, which has efficient representations in powers 1, 2, and 3 of the prime, to
compute fp

easy, f
p2

easy, f
p3

easy, (fz
easy)p, (fz2

easy)p, (fz3

easy)p, (fz3

easy)p2

The evaluation then amounts to:

[fp
easy · fp2

easy · fp3

easy]︸ ︷︷ ︸
≡y0

· [1/feasy]2︸ ︷︷ ︸
≡y2

1

· [(fz2

easy)p]6︸ ︷︷ ︸
≡y6

2

· [1/(fz
easy)p]12︸ ︷︷ ︸

≡y12
3

· [1/(fz
easy · (fz2

easy)p)]18︸ ︷︷ ︸
≡y18

4

· [1/fz2

easy]30︸ ︷︷ ︸
≡y30

5

· [1/(fz3

easy · (fz3

easy)p)]36︸ ︷︷ ︸
≡y36

6

These evaluations have efficient algorithms that have been around for a long time. We take the vector addition
chain approach, which is more or less the equivalent of “flattening” that we also see crop up in the reduction
of polynomial constraints in instance-witness definitions of R1CS systems. You can show that the following
definitions yield efficient computation of these multiexponentials which we take from the original manuscript:

T0 ← (y6)2

T0 ← T0 · y4

T0 ← T0 · y5

T1 ← y3 · y5

T1 ← T1 · T0
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T0 ← T0 · y2

T1 ← (T1)2

T1 ← T1 · T0

T1 ← (T1)2

T0 ← T1 · y1

T1 ← T1 · y0

T0 ← (T0)2

fhard ← T0 · T1

which is only a few multiplications and squarings! Efficient. There’s extensions and improvements, but that’s the
basic stuff.
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BONUS - glued miller loop and improved signature performance

This is pretty sick. Remember that eventually we want to check the relation e(σi, g2) = e(H(m), P (i)) for
verification. You could just naively evaluate lhs and rhs and check for equality. Right? Or notice that:

e(σi, g2) = e(H(m), P (i))

=⇒ e(σi, g2)e(H(m), P (i))−1 = 1

=⇒ e(σi, g2)e(H(m),−P (i)) = 1

=⇒
(
f[6z+2],σi

(g2)f[6z+2],H(m)(−P (i))
) p12−1

r = 1

which results in only having to evaluate a single Miller loop, followed by a single exponentiation at the end!
Also during the recursion we don’t need to track fi,s(G) nor fi,H(m)(−xG), just their product, which saves a
multiplication in F12 in each iteration of this glued Miller loop. The savings compound since we’re aggregating
many partial signatures, and the idea works exactly the same for the aggregated signatures. Namely, verification
is equivalent to:

(
t∏
i

f[6z+2],σi
(g2)f[6z+2],H(m)(−P (i))

) p12−1
r

= 1

This is the jist of it. There’s so many more things to work with, like different pairings like the Xate pairing, but
that’s beyond the scope here. I’ll just mention maybe that there are many more cleverer things you can do to
take full advantage of the cyclotomic subgroup stuff like efficient compression and arithmetic on compressed
representations of elements, but that’s over the top for now.
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Distributed Keys

When dealing with cryptography in general, the source of truth you use for encrypting your secrets is usually a
single point of failure, in any naïve implementations. This could be the private key used to generate / verify
signatures for example. Also, when decentralizing cryptography protocols, traditional ideas of verification must
be extended to encompass many parties, with the intention of removing single point failures, not adding more.
This goes over the basics of related distribution protocols for secret sharing and validation.

Shamir’s Secret Sharing

This is the foundation on which many distributed key generation (DKG) protocols are based. The punchline is
that it allows for t individuals, out of n total, to verify a signature. Not only does this allow for fault tolerance
(e.g. node in the network goes down), but allows for a quorum of attestations, improving trustlessness. Maximum
security would require n > ⌊2t− 1⌋.
At the core of this concept is the following truth. Given a set {(xi, yi) ∈ R2 | i ∈ [0, t]}, there exists a UNIQUE
polynomial q(x) of degree t− 1 such that q(xi) = yi. We then express this polynomial as:

q(x) = a0 + a1x+ · · ·+ at−1x
t−1

where a0 is the secret to be shared. Discretization is then done as si = q(i), where si is the partial shared secret.
The partial signature is therefore siH(m), where H(m) is the hashed message in the group G1. The uniqueness
of polynomial interoplation requires knowledge of exactly t of these partial shares to recover the shared secret.
Knowledge of only t− 1 means that, of the candidate a′

0 ∈ [0, p), there will be again only a unique polynomial
fitting (0, a′

0) and (i, ai), each of these p unique polynomials being equally likely, thus maintaining security of
the shared secret.
Recovery of the shared secret is done via Lagrange interpolation:

a0 = q(0) =
t−1∑
j=0

yt

t−1∏
m=0,m̸=j

xm

xm − xj

The problems with this, while admittedly simple and extensible, is that it assumes honesty of the participants (at
no point is there an ability to verify partial shares), and further that the shared secret is known singuarly at
some point in space-time, both at instantiation of the sharing and at the recovery of the shares. To address these
issues, we move beyond to . . .

Feldman’s VSS

This is a new approach to secret sharing that addresses the concern that the partials are not verifiable by the
council. We again now generate q(x), with q(0) = a0 which is the secret, and transmit to all i participants a
partial share si = f(i). The dealer also sends a committment {Ak = gak}k=0,t, with g a generator of Z∗

p. This
allows for verification (that the partials form a secret) by checking:

gsi
?=

t∏
k=0

(Ak)ik

performed in the field (aka mod p). If participant i does not satisfy the above, a complaint is made publically
against the dealer, who is required to then reveal si that satisfy the above, else they’re fired!
The biggest issue is that this protocol leaks A0 = ga0 = gsecret mod p. However, assume the bad actor knows t
or less shares si and ga0 . They can then compute {Ak}k=1,t via Ak = gak =

∏t
i=0(gsi)λki , where λ satisfies

ak =
∑t

i=0 λkif(i), which is still not enough to learn about a0 anymore than what you could learn from ga0 .
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pedersen vss

To address the concern of the secret’s secrecy, we move to pedersen dkg. Now in this scheme, each participant
generates coefficients, and the cooperation of participants is what allows for the collective generation of a secret.
The public parameters in this setup are a large prime p, a generator g of a subgroup of Z∗

p, and another element
in the subgroup of Zp generated by g, h, where no one knows logg h. Therefore, the cost of information-theoretic
secrecy of the shared secret is the hard assumption that the bad actor, or a cheating dealer, cannot solve the DL
problem.
The dealer generates two random polynomials of degree t, q(x) =

∑
k akx

k, q̃(x) =
∑

k bkx
k ∈ Zp[x], with again

q(0) = a0 the shared secret. The dealer then transmits to each participant i their share (si = q(i), s̃i = q̃(i)),
and broadcasts the values {Ck = gakgbk mod p}k=0,t. Verification of the shared secret follows by:

gsihs̃i
?=

t∏
k=0

(Ck)ik

mod p

As before, complaints against the dealer are made public, and are rectified by the dealer transmitting (si, s̃i)
satisfying the above lest they face disqualification.
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DKG

feldman dkg

feldman dkg is built on top of the idea’s above to create distribution of the process among participants. Each
participant i is now a dealer running a version of Feldman vss, and glued together according to the following. .
Firstly, each participant i chooses a secret value ai ∼ U(0, p) ∈ Zp, as well as a random polynomial qi(x) of
degree t in Zp[x]:

qi(x) = ai0 + ai1x+ ai2x
2 + · · ·+ aitx

t

The participant then computes and broadcasts Cij = gaij for j ∈ [0, t]

Then, everyone computes the shares of 1, . . . , n of their secret polynomial sij = qi(j), and sends them secretly
to participants j = 1, . . . , n.
A participant is able to verify that a share received from j is consistent by assuring:

gsij =
t∏

k=0
Cjk

ik

If this fails, then participant i complains publically. If there are t complaints against j, they’re automatically
kicked out. If there are less than t complaints, the accused participant must broadcast the correct share (and
random value if used). If this fails, they’re booted (you’re fired!). In this way, we can remove the assumption in
Shamir’s secret sharing of honesty of the participants, because we can verify when they’re lying.
Finally, participant i determines their share as si =

∑
j∈qualified sji, and the public key is now y =

∏
i∈qualified Ci0,

and the public verification values are Ck =
∏

i∈qualified Cik. The shared secret value s itself is not computed by
anyone since they don’t know all the parts, but can be seen as s =

∑
i ai0.

pedersen dkg

We now finally move onto secure distributed key generation that is verified to be secure enough for threshold
signaturing (see this).
We now buil don topof the pedersen vss and feldman vss.

Generating s: Each player Pi performs a Pedersen-VSS of a random value zi as a dealer: 1. Pi chooses two
random polynomials qi(z), q′

i(z) over Zq[z] of degree t:

qi(z) = ai0 + ai1z + . . .+ aitz
t

q′
i(z) = bi0 + bi1z + . . .+ bitz

t

Let zi = ai0 = qi(0). Pi broadcasts Cik = gaikhbik mod p for k = 0, . . . , t. Pi computes the shares
sij = qi(j), s′

ij = q′
i(j) mod q for j = 1, . . . , n and sends sij , s

′
ij to player Pj .

3. Each player Pj verifies the shares he received from the other players. For each i = 1, . . . , n, Pj checks if

gsijhs′
ij =

t∏
k=0

(Cik)jk

mod p

If the check fails for an index i, Pj broadcasts a complaint against Pi.
4. Each player Pi who, as a dealer, received a complaint from player Pj broadcasts the values sij , s

′
ij that

satisfy the above.
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5. Each player marks as disqualified any player that either
• received more than t complaints in Step 1b, or
• answered to a complaint in Step 1c with values that falsify the relation above.

Each player then builds the set of non-disqualified players QUAL. The distributed secret value s is not explicitly
computed by any party, but it equals s =

∑
i∈QUAL zi mod q. Each player Pi sets his share of the secret as

si =
∑

j∈QUAL sji mod q and the value s′
i =

∑
j∈QUAL s

′
ji mod q.

Extracting y = gs mod p: Each player i ∈ QUAL exposes yi = gzi mod p via Feldman VSS:
1. Each player Pi, i ∈ QUAL, broadcasts Aik = gaik mod p for k = 0, . . . , t.
2. Each player Pj verifies the values broadcast by the other players in QUAL, namely, for each i ∈ QUAL, Pj

checks if
gsij =

t∏
k=0

(Aik)jk

mod p

If the check fails for an index i, Pj complains against Pi by broadcasting the values sij , s
′
ij that satisfy the

relation in part 1 but do not satisfy the relation immediately above.
3. For players Pi who receive at least one valid complaint, i.e. values which satisfy the equation in part 1

and not the equation above, the other players run the reconstruction phase of Pedersen-VSS to compute
zi, qi(z), Aik for k = 0, . . . , t in the clear. For all players in QUAL, set yi = Ai0 = gzi mod p. Compute
y =

∏
i∈QUAL yi mod p.

What might this look like? I’d recommend looking at the implementation here for the basics. The idea is that the
reduction of single point failures via the secret generation requires a more secure protocol like pedersen dkg,
which allows later steps to be less secure and more efficient, namely by using feldman instead.
However, it was shown that using Feldman vss for both stages is actually secure enough when subsequently used
in a thresholding signature scheme! This is why cloudflare uses it, and saves them the pain of implementing two
different VSS schemes.
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publically verifiable secret sharing and DKG

The schemes above rely on internal validation of the council for maintaining honesty and rigor, but if the entire
idea is to create a scheme that removes trust, this is a natural point to consider for further improvements. We
move to define a publically verifiable secret sharing protocol:

1. Setup
• The initial parameters contain information about base field, (t, n) and the relation defining valid key pairs

(pairing relation)
• Generate public private key pair with SNARK proof asserting the validity of the pair
• Execution of proof - verify validity
2. Distribution
• This takes a secret, and outputs encrypted partial shares and a SNARK proof asserting sharing correctness
3. Distribution verification
• Execution of previous proof - verify distribution of shares
4. Reconstruction
• outputs a decrypted share and a proof of decryption
• reconstruct the secert or return an error
5. Verify the reconstruction (namely if decryted share is valid decryption of the partial share)

You’ll notice that there are many SNARKs involved in this process, which adds must complications and headaches.
For this reason, it’s difficult to implement this protocol, so if you don’t need this level of scrutiny, then it’s
probably better to not do this. I’d read this for a nice overview.
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VRF

The problem with a pseudorandom oracle is that it is, by its construction, NOT verifiable. Namely, without
knowledge of the seed s, you cannot distinguish the return value of a pseudorandom function fs from an
independently selected random string. This therefore requires trust on behalf of the oracle to produce and
faithfully execute the evaluation of the oracle function fs(x). You could remove trust by publishing the seed, but
then you remove all unpredictability.
You can instead use a proof to validate the faithful execution of fs(x) without actually revealing s. A proof
proofx would say that a unique value v is provable as the value of fs(x). This is what is called a verifiable random
function (VRF).

Issues with proofs

If we allow interaction, then we can use a ZK proof and a committment scheme of the oracle to the seed s. To
prove v = fs(x), the oracle gives a ZK proof to the verifier of the above, and that c is a committement to s. But
we don’t want interaction ideally.
We could move to a noninteracting ZK proof, but this requires consensus on a bit string between prover and
verifier that is GUARANTEED to be random. We want to avoid all the ways we coudl generate this random string:

• If the prover chooses the string, this breaks guarantee of the proof and introduces bias
• If the verified chooses the string, the ZK assumption is broken, and the proof system is not guaranteed

(namely, the prover could leak info on s and break unpredictability by proof)
• If both jointly choose the string, that’s interacting, which we don’t want
• If a third party chooses the string, we add a further requirement of trust.

See here for more details.

Signatures as VRFs

Assume that a scheme exists to generate signatures σ = sH(m), with a mapped-to-group hash of a message m,
and private key s. This is unpredictable (by assumption of DL hardness), but verifiable (with knowledge of the
pub key and pairing operations on the curve for instance). However: - There may be many valid signatures
for a given string, violating the requirement that elements in the image of the VRF are provably unique - The
signature is unpredictable, not necessary random
The unique provability depends on the actual scheme you use, and you’d hope that your scheme satisfies this,
but if your scheme is probabilistic or hysteretic, people have shown that you cannot guaratee unique provability.
These functions are called verifiable unpredictable functions (VUFs).
Is it possible to turn a VUF into a VRF? Yes, and no.
See here for the construction of what this could look like,but this only works IFF f satisfies the property that
input lengths are logarithmically related to the security, so in that construction, it suggests that for a BLS
signature scheme on BN254 that |m| = O(logL), which limits the size of the messages we can securely sign in
this approach. So, next!
There are other ways to turn a VUF into VRF, for example hardcore bit extraction. We can use the following
construction to replace the oracle function with f ↪→ f ′ = ⟨f(x), r⟩2, where r is a random binary string and the
brackets are inner products. The proof is therefore saying f ′(x) = b is a string v such that ⟨r, v⟩2 = b with a
proof of f(x) = v. This might look like:
fn hardcore_bit_extraction(signature: &noether::U256)-> Result<noether::U256>{

let mut rng = rand::thread_rng();
let rando = noether::U256::from_limbs(rng.gen());
let mut retval = noether::U256::ZERO;
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for i in 0..256 {
if (signature.bit(i) ˆ rando.bit(i)) == 1 {

retval = retval.bit_or(noether::U256::ONE.shl(i));
}

}
//add final hash
let hash = ethers::core::utils::keccak256(retval.to_be_bytes::<32>());
Ok(noether::U256::from_be_slice(&hash))

}
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Implementation considerations

Scalar definition

We need multiprecision arithmetic because of the sheer size of these numbers. This section outlines performance
considerations when dealing an implementation of these arithemtics.
For a 256-bit prime modulus, the decomposition of this into 4 64-bit limbs/words/branches/fields optimizes the
arithmetic beacuse of the fact that each limb fits natively into 64-bit cpu registers. The general idea for squaring
/ multiplying 4-limb elements is that the operation produces an 8-limb element, which could be considered as
a long type, with any potential overflow of the 4 or 8 limb element being treated by a carry bit. There are,
apparently constant time functions that exist for comparisons and modulo addition and subtraction too in this
representation. Since these operations happen extremely frequently, they need to be optimized as much as
possible.

Coordinates representations I cannot really get into this without talking about coordinate representations of
points on the elliptic curves. There are different representations that admit different algorithms, and that is a
bummmer. The biggest issue we’ll come across are addition and doubling of points on curves, and these will
be better or worse depending on which coordinate system we use. That being said, here is an overview of the
different options that we will consider:

• Affine
– this is the most basic and intuitive, it is simply the pair of coordinates (x, y) such that the pair

represents a point that lies on the curve, aka y2 = x3 + 3.
– Not favourable for doubling or addition because it involves inversion, which for a prime field with

order as large as ours, is the most extremely ineffecient of the arithmetic operations on elliptic curves.
• projective

– this coordinate system solves the problem of inversion by the introduction of a third element that
replaces inversion with a few other operations that are cheaper
∗ they are therefore defined by a tuple [X : Y : Z]

– the conversion from affine to projective is simply proj : Fp × Fp → FP× FP; (x, y)→ [X = x : Y =
y : Z = 1]
∗ points of the form [X : Y : 0] are the point(s) of infinity

• Jacobian
– this is a special subset of projective coordinates where (x, y) = (X/Z2, Y/Z3)
– this seems to admit very efficient operations on coordinates, specifically for addition and doubling

• extended twisted coordinates
– this introduces a fourth variable that now unifies the addition and doubling formulae, are De Smet et

al shows that this can be parallelized
We’ll deal with Jacobian coordinates in the entirety of what follows, since that’s where the good stuff seems to
be.

Modular multiplication

Can’t really be parallelized as far as I found. Fastest algorithm that exists is the Montgomery reduction algorithm,
which is outlined as Algorithm 14.32 in the handbook, and is optimized for word-by-word reduction! very sweet.
The algorithm is faster at the expense of a precomputation step of the parameter inv = (−q−1mod264)mod264,
but this is easy to do since the parameter is constant for every element in the field. The algorithm is given
below, and an example toy implementation is given in my Scalar class in bls.ipynb, which is untested and
unoptimized. An excellent implementation already exists in alloy, so let’s use it! Note that this is for the
multiplication of 2 256-bit (in our case) numbers, which is independent of the coordinate representation. This is
just a fast modular multiplication algorithm so it’s general enough to include in our implementation regardless of
the choice of affine vs jacobian.
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Listing 1: Montgomery multiplication INPUT: integers m = (mn−1 · · ·m1m0)b, x = (xn−1 · · ·x1x0)b,
y = (yn−1 · · · y1y0)b with 0 ≤ x, y < m, R = bn with gcd(m, b) = 1, and m′ = −m−1 mod b.
OUTPUT: xyR−1 mod m.

1. A← 0. (Notation: A = (anan−1 · · · a1a0)b.)
2. For i from 0 to (n− 1) do the following:

i. ui ← (a0 + xiy0)m′ mod b.
ii. A← (A+ xiy + uim)/b.

3. If A ≥ m then A← A−m.
4. Return(A).

Modular addition and doubling

This is slow in the affine representation because of the inversion, done with either extended euclidean algorithm
or modular exponentiation.

Addition: (x3, y3) =
((

y2 − y1

x2 − x1

)2
− x1 − x2,

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

)

Doubling: (x3, y3) =
((

3x2
1 + a

2y1

)2

− 2x1,

(
3x2

1 + a

2y1

)
(x1 − x3)− y1

)

This can be improved and even parallelized if we move to extended twisted edwards coordinates because it
removes the branching due to the unity of the addition and doubling formulae, which is why this is called the
snark-friendly representation:

(x3, y3) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)

But this is a bit much. I recommend all operations on elements on curves be done in projective coordinates,
since there are many optimized algorithms for this outlined here.
There’s also a good reference for the modular arithmetic within different fields here.
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Advanced Topics for BLS and DKG

Fast BLS Threshold Signature Aggregation

Scalable DKG Protocols

Optimizations for Large-Scale Systems

58


	Glossary of Notation
	Math Primer for BLS and BN254
	Set Theory
	Group Theory
	Ring Theory
	Number Theory
	Field Theory
	Field Extensions and Towers over Finite Fields
	Vector Spaces
	Algebraic Varieties
	Elliptic Curves
	Pairings
	Barreto-Naehrig (BN) Curves
	BN254 Specifics
	BN254 with Thresholding
	optimal ate pairing
	Final exponentiation
	BONUS - glued miller loop and improved signature performance
	Distributed Keys
	DKG
	publically verifiable secret sharing and DKG
	VRF
	Implementation considerations
	Advanced Topics for BLS and DKG


