# Symmetric Interaction Calculus The [Symmetric Interaction Calculus](https://medium.com/@maiavictor/the-abstract-calculus-fe8c46bcf39c) is a minimal programming language and model of computation obtained by slightly modifying the Lambda Calculus so that it matches perfectly the abstract part of [Lamping's optimal reduction algorithm](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.2386&rep=rep1&type=pdf). Characteristics: 1. Like the Lambda Calculus, it can easily express algebraic datatypes and arbitrary recursive algorithms. 2. Like Turing Machines, it can be evaluated through simple, constant-time operations. 3. Unlike the Lambda Calculus (and like Rust), it does not require garbage-collection. 4. Unlike the Lambda Calculus, all intermediate steps of its optimal reduction correspond to terms. 5. Unlike the Lambda Calculus, terms can be reduced not only optimally, but efficiently (i.e., [no oracles](https://dl.acm.org/citation.cfm?id=1131315)). 6. Unlike both, it is intrinsically parallel. 7. It is isomorphic to [symmetric interaction combinators](https://pdfs.semanticscholar.org/1731/a6e49c6c2afda3e72256ba0afb34957377d3.pdf), a beautiful model of computation. ## Syntax The syntax is obtained by simply extending the Lambda Calculus with `pairs` and `let`: ```haskell term ::= | λx. term -- abstraction | (term term) -- application | (term,term) -- pair | let (p,q) = term in term -- definition | x -- variable ``` Except variables are restricted to occur only once and are freed to occur globally ([why?](https://stackoverflow.com/questions/52048420/can-a-calculus-have-incremental-copying-and-closed-scopes)). ## Reduction rules There are 4 reduction rules. Two of them are usual: the application of a lambda, and the projection of a pair. The other two deal with the previously unspecified cases: "applying a pair" and "projecting a lambda". The first performs a parallel application, and the second performs an incremental duplication. All of them are constant-time operations. ```haskell -- Rule 0: lambda-application ((λx.f) a) ---------- f [x / a] -- Rule 1: pair-projection let (p,q) = (u,v) in t ---------------------- t [p / u] [q / v] -- Rule 2: pair-application ((u,v) a) ---------------- let (x0,x1) = a in ((u x0),(v x1)) -- Rule 3: lambda-projection let (p,q) = (λx.f) in t ----------------------- let (p,q) = f in t [p / λx0.p] [q / λx1.q] [x / (x0,x1)] ``` Here, `[a / b]` stands for a global substitution of the occurrence of `a` by `b`, and `x0`, `x1` are fresh variables. I've used additional parenthesis around lambdas to make the reading clearer. ## Examples ### Example 0: lambda-application and pair-projection (nothing new). ```haskell λu. λv. let (a,b) = (λx.x, λy.y) in (a u, b v) ---------------------------------------------- pair-projection λu. λv. ((λx.x) u, (λy.y) v) ---------------------------- lambda-application λu. λv. ((λx.x) u, v) --------------------- lambda-application λu. λv. (u, v) ``` ### Example 1: using lambda-projection to copy a function. ```haskell let (a,b) = λx.λy.λz.y in (a,b) ------------------------------- lambda-projection let (a,b) = λy.λz.y in (λx0.a, λx1.b) --------------------------------------- lambda-projection let (a,b) = λz. (y0,y1) in (λx0.λy0.a, λx1.λy1.b) -------------------------------------------------- lambda-projection let (a,b) = (y0,y1) in (λx0.λy0.λz0.a, λx1.λy1.λz1.b) ----------------------------------------------------- pair-projection (λx0.λy0.λz0.y0, λx1.λy1.λz1.y1) ``` ### Example 2: demonstrating pair-application. ```haskell ((λx.x, λy.y) λt.t) ------------------- pair-application let (a0,a1) = λt. t in ((λx.x) a0, (λy.y) a1) --------------------------------------------- lambda-projection let (a0,a1) = (t0,t1) in ((λx.x) λt0.a0, (λy.y) λt1.a1) ------------------------------------------------------- pair-projection ((λx.x) λt0.t0, (λy.y) λt1.t1) ------------------------------- lambda-application ((λx.x) λt0.t0, λt1.t1) ----------------------- lambda-application (λt0.t0, λt1.t1) ``` ### Example 3: 2 + 3. This is equivalent to: ```haskell data Nat = S Nat | Z add : Nat -> Nat -> Nat add (S n) m = S (add n m) add Z m = m main : Nat main = add (S (S (S Z))) (S (S Z)) ``` [Full reduction.](https://gist.github.com/MaiaVictor/659e047c267a801c7d9cf1970541cb54) ### Example 4: applying not 8 times to True. [Full reduction.](https://gist.github.com/MaiaVictor/d565bee7d9083e98ae1470067ce12dbb) --- [Here is a handwritten reduction of 2^(2^2).](drawing.jpeg)