# `syntactic-for` [crates.io](https://crates.io/crates/syntactic-for) [docs.rs](https://docs.rs/syntactic-for) A syntactic "for" loop Rust macro. For example, the following takes the sum of the bit-length of four integer types: ```rust let sum = syntactic_for!{ ty in [ u8, u16, u32, u64 ] { [$( <$ty>::BITS ),*].into_iter().sum::() }}; assert_eq!(sum, 120); ``` ## Usage The syntax is as follows: ```rust syntactic_for!{ IDENTIFIER in [ EXPRESSION, EXPRESSION, ... ] { BODY }} ``` where `BODY` works similarly to `macro_rules!`, that is: `$($IDENTIFIER)SEPARATOR*` will expand and substitute `IDENTIFIER` with each `EXPRESSION`, separating the expansions with `SEPARATOR`. `SEPARATOR` can be any non-`*` punctuation. Hence, the example from above could also be written without an iterator: ```rust $( <$ty>::BITS )+* ``` ## Examples ### Loop unrolling Sum the elements of an array with [loop unrolling](https://en.wikipedia.org/wiki/Loop_unrolling): ```rust let array = b"oh my, I am getting summed!"; let mut acc = 0u32; let mut i = 0; while i <= array.len()-4 { syntactic_for!{ offset in [ 0, 1, 2, 3 ] {$( acc += array[i + $offset] as u32; )*}} i += 4; } for j in i..array.len() { acc += array[j] as u32; } assert_eq!(acc, 2366); ``` ### Matching Find the maximum value of an integer type of the given bit size: ```rust let max_size = syntactic_for!{ ty in [ u8, u16, u32, u64, u128 ] { match bit_size { $(<$ty>::BITS => <$ty>::MAX as u128,)* other => panic!("No integer of size {other}"), } }}; ``` ### `impl` blocks Implement a trait for a set of types: ```rust syntactic_for!{ ty in [ u8, u16, u32, u64, u128 ] {$( impl MyTrait for $ty { // snip. } )*}} ``` ### Custom syntactic loop A useful design pattern is to define a custom macro that expands to a syntactic loop over a given set of expressions: ```rust #[doc(hidden)] pub extern crate syntactic_for; #[macro_export] macro_rules! for_each_custom_type { ($ident:ident { $($tt:tt)* }) => { $crate::syntactic_for::syntactic_for! { $ident in [ $crate::CustomType1, $crate::CustomType2, // etc. ] { $($tt)* } } } } ``` For example, a library could expose `for_each_custom_type` as a way of letting its users write syntactic loops over a set of types defined in the library. Then, it becomes possible to add types to that loop inside the library, whithout requiring any change on the user's end: ```rust // Try and parse each library type in succession, stopping at the first // success: fn can_parse(input: &str) -> bool { my_library::for_each_custom_type! { ty { $(if let Ok(parsed) = <$ty>::parse(input) { return true; })* }} return false; } ```