use clap::{self, ArgEnum, Clap}; #[derive(Clap)] struct Args { #[clap(long, arg_enum, multiple_values = true)] datasets: Vec, #[clap(long, arg_enum, multiple_values = true)] libraries: Vec, } #[derive(ArgEnum, Clone)] enum Dataset { #[clap(name = "allstate")] Allstate, #[clap(name = "boston")] Boston, #[clap(name = "census")] Census, #[clap(name = "flights")] Flights, #[clap(name = "heart_disease")] HeartDisease, #[clap(name = "higgs")] Higgs, #[clap(name = "iris")] Iris, } impl std::fmt::Display for Dataset { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Dataset::Allstate => write!(f, "allstate"), Dataset::Boston => write!(f, "boston"), Dataset::Census => write!(f, "census"), Dataset::Flights => write!(f, "flights"), Dataset::HeartDisease => write!(f, "heart_disease"), Dataset::Higgs => write!(f, "higgs"), Dataset::Iris => write!(f, "iris"), } } } #[derive(ArgEnum, Clone, PartialEq)] enum Library { #[clap(name = "pytorch")] PyTorch, #[clap(name = "sklearn")] SkLearn, #[clap(name = "tangram")] Tangram, } impl std::fmt::Display for Library { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Library::PyTorch => write!(f, "pytorch"), Library::SkLearn => write!(f, "sklearn"), Library::Tangram => write!(f, "tangram"), } } } #[derive(PartialEq, Eq)] enum Task { Regression, BinaryClassification, MulticlassClassification, } impl Dataset { fn task(&self) -> Task { match self { Dataset::Allstate | Dataset::Boston => Task::Regression, Dataset::Census | Dataset::Flights | Dataset::HeartDisease | Dataset::Higgs => { Task::BinaryClassification } Dataset::Iris => Task::MulticlassClassification, } } } #[derive(serde::Deserialize, Debug)] #[serde(untagged)] pub enum BenchmarkOutput { Regression(RegressionBenchmarkOutput), BinaryClassification(BinaryClassificationBenchmarkOutput), MulticlassClassification(MulticlassClassificationBenchmarkOutput), } impl BenchmarkOutput { fn memory(&mut self, memory: String) { match self { BenchmarkOutput::Regression(output) => { output.memory = Some(memory); } BenchmarkOutput::BinaryClassification(output) => { output.memory = Some(memory); } BenchmarkOutput::MulticlassClassification(output) => { output.memory = Some(memory); } } } } #[derive(serde::Deserialize, Debug)] pub struct RegressionBenchmarkOutput { mse: f32, memory: Option, } #[derive(serde::Deserialize, Debug)] pub struct BinaryClassificationBenchmarkOutput { auc_roc: f32, memory: Option, } #[derive(serde::Deserialize, Debug)] pub struct MulticlassClassificationBenchmarkOutput { accuracy: f32, memory: Option, } fn main() { let args = Args::parse(); let regression_datasets = args .datasets .iter() .cloned() .filter(|dataset| dataset.task() == Task::Regression) .collect::>(); let binary_classification_datasets = args .datasets .iter() .cloned() .filter(|dataset| dataset.task() == Task::BinaryClassification) .collect::>(); let multiclass_classification_datasets = args .datasets .iter() .cloned() .filter(|dataset| dataset.task() == Task::MulticlassClassification) .collect::>(); // Build the tangram benchmarks. for dataset in args.datasets.iter() { build_tangram_benchmark(dataset); } // Test the regression datasets. if !regression_datasets.is_empty() { println!("# Regression"); run_benchmarks(&args.libraries, ®ression_datasets); println!(); } // Test the binary classification datasets. if !binary_classification_datasets.is_empty() { println!("# Binary Classification"); run_benchmarks(&args.libraries, &binary_classification_datasets); println!(); } // Test the multiclass classification datasets. if !multiclass_classification_datasets.is_empty() { println!("# Multiclass Classification"); run_benchmarks(&args.libraries, &multiclass_classification_datasets); println!(); } } fn build_tangram_benchmark(dataset: &Dataset) { let status = std::process::Command::new("cargo") .arg("build") .arg("--release") .arg("--bin") .arg(format!("tangram_linear_benchmark_{}", dataset)) .spawn() .unwrap() .wait() .unwrap(); assert!(status.success()); } fn run_benchmarks(libraries: &[Library], datasets: &[Dataset]) { for dataset in datasets.iter() { println!("## {}", dataset); for library in libraries.iter() { let start = std::time::Instant::now(); let output = run_benchmark(dataset, library); let duration = start.elapsed(); match output { BenchmarkOutput::Regression(output) => println!( "library {} mse {} duration {:?} memory {:?}", library, output.mse, duration, output.memory ), BenchmarkOutput::BinaryClassification(output) => println!( "library {} auc_roc {} duration {:?} memory {:?}", library, output.auc_roc, duration, output.memory ), BenchmarkOutput::MulticlassClassification(output) => println!( "library {} accuracy {} duration {:?} memory {:?}", library, output.accuracy, duration, output.memory ), }; } } } fn run_benchmark(dataset: &Dataset, library: &Library) -> BenchmarkOutput { let output = match library { Library::Tangram => std::process::Command::new("time") .arg("-f") .arg("%M") .arg(format!( "target/release/tangram_linear_benchmark_{}", dataset )) .output() .unwrap(), _ => std::process::Command::new("time") .arg("-f") .arg("%M") .arg("python") .arg(format!("crates/linear/benchmarks/{}.py", dataset)) .arg("--library") .arg(format!("{}", library)) .output() .unwrap(), }; assert!(output.status.success()); let stderr = String::from_utf8(output.stderr).unwrap(); let memory = stderr.lines().last().unwrap().to_owned(); let stdout = String::from_utf8(output.stdout).unwrap(); let mut output: BenchmarkOutput = serde_json::from_str(stdout.lines().last().unwrap()).unwrap(); output.memory(memory); output }