Bulletproof Plus Rust implementation

Cryptographic security audit

Quarkslab

Reference 23-08-1291-LIV
Version 1.1
Date 2023/10/20

Quarkslab SAS

10 boulevard Haussman
75009 Paris

France

Contents

1 Project Information

2 Executive summary
2.1 Purpose e e e e e e e e e e e e e e e e e e e
2.2 REPOItSIIUCIUIC . « . v v v v v v v et e e e e e e e e e e e e e e e e e e
2.3 Disclaimer e e e e e e
2.4 Findings sSUMMAry ot v vttt ittt e e e e e e e e e e e e e

3 Context and scope
3.1 Tari ... e e e e e e e e
3.1.1 BulletproofsPlus e
3.2 Scopeand methodology

4 Discovery
4.1 Bulletproofs Plus State of the Art
4.1.1 Range Proof and Bulletproof,
4.1.2 BulletproofsPlus e
4.1.3 Tari’s BulletproofsPlus
4.2 Code StruCture o v v v v i it e e e e e e e e e e e e e e e e
4.2.1 SIC/ . o e e e e e e e e e e
4.2.2 benchmark/
4.2.3 teSES/ . . . e e e e e e e e e e e
4.3 Dependencies ittt e e e e e e e e e e e e e e
4.3.1 Merlin’s Transcript ¢ v v v v e e e e e e e e e e e e e
4.3.2 tari-curve25519-dalek it e e e
4.4 Codequality e e e e e e e
4.4.1 cargoaudit
4.4.2 CargO GEIZET . » v v v v i e
4.4.3 cargo clippy . - - v o e e e e

5 Evaluation Overview
5.1 Hypothesis e e e e e e e e
5.2 Threats and Securitychecks oL .
5.3 Methodology e
5.4 Topicscovered i i it e e e e e e e e e e e e
5.4.1 Range Proof and Inner ProductRound
5.4.2 TranscriptS v v i e e e e e e e e e e e e e e e e e e e
5.4.3 GENEratorS v v it e e e e e e e e e e e e e e e e e e
5.4.4 Curve25519 Operations v v v v i v i e e e e e
5.5 Protocol Specification. e e

6 Protocol Specification Analysis
6.1 NoOtation o e e e e e e e e e e e
6.2 Commitments EXteNSIONS . . . v v v v v v e e e e e e e e e e e e e e e e

6.3 Minimum Value Assertion e e e e e
6.4 Batch Verification e e e e
6.5 Mask Recovery i i i i e e e e e e e e e e e
6.6 Sum Optimization i i vttt e e e e

Code Review

7.1 Basisnotations i e e e e e e e e e e e e e e e e
7.2 benchmark/ e e e e e
7.3 LranSCriPL.IS . . v v v v o e
7.4 transcript protocol.rs e
7.5 bulletproof gens.rs e
7.6 pedersen ZeN.IS.ttt e e e e e e e e e
7.7 range ProofirS. e e

Resiliency tests

8.1 Fuzzing for ArithmeticOverflow
8.2 Playing with Nonce Generation
8.3 Fuzzing for difference in curve25519-dalekt

9 Conclusion
Bibliography

A Appendix

A1l Output of cargo geiger v v v v it e e e e e e e e e e
A2 Output of cargo CLIPPY « - v v v v v v e e e e e e e e e e e e e e e e e
A.3 Difference between the two dalek crate for the Montgomery file

1 Project Information

Document history

Version ‘ Date ‘ Details ‘ Authors ‘
1.0 2023/10/20 Initial Version Dahmun Goudarzi
1.1 2023/10/20 Revised version | Dahmun Goudarzi

for public release

Quarkslab
Contact Role ‘ Contact Address
Frédéric Raynal CEO fraynal@quarkslab.com
Ramtine Tofighi Shirazi | Project Manager mrtofighishirazi@quarkslab.com
Dahmun Goudarzi R&D Engineer, dgoudarzi@quarkslab.com
Cryptographic Expert

Tari Labs

Contact Contact Address
Cayle Sharrock Head of Engineering caylemeister@tari.com

Ref: 23-08-1291-LIV 1 Quarkslab SAS

2 Executive summary

This report presents the results of the collaboration between Tari Labs and Quarkslab on the
cryptographic security audit of Tari Labs’ Bulletproof Plus [1] implementation in Rust.

Tari is an open-source, decentralized blockchain protocol that is built to enable digital assets to
be created, transferred, and managed in a decentralized and privacy-focused way.

To that purpose, Tari Labs developed the Bulletproof Plus protocol in Rust on which this crypto-
graphic security audit is focused.

The Bulletproof Plus implementation is a sensitive part of Tari’s project since the protocol is
mainly used to prove that a transaction is valid with zero-knowledge techniques, thus providing a
privacy protection to end users.

2.1 Purpose

The goal of the cryptographic security audit was to verify the proper implementation of the
Bulletproof Plus protocol, the associated cryptographic properties, and verify the optimization
applied by Tari Labs. To that end, the following steps were taken:

* Step 1: discovery of Tari’s code-base and related documentations and specifications with
respect to existing articles about Bulletproof Plus [2].

* Step 2: review of Tari Labs Bulletproof Plus proper implementation written in Rust with
respect to [2] and related specifications.

* Step 3: review of cryptographic properties and applied optimization with respect to potential
cryptographic attacks and state-of-the-art recommendations.

* Step 4: report edition and delivery.

A

2.2 Report structure

An important effort has been put into the analysis of the specifications in order to
write them as depicted in Chapter 6.

This audit report starts with introductory sections and in Section 3 a more detailed presentation
of the context and scope of the audit. Then, Section 4 introduces the discovery work performed
by Quarkslab auditors to prioritize items for the review and to determine the relevant properties
and cryptographic attacks to assess.

Afterward, Section 4.4 presents Quarkslab auditors’ review of Tari Labs code-based quality
checks. Section 5 details the verifications on the implementation against potential cryptographic
attacks and Section 6 provides the assessment of the cryptographic specifications.

Ref: 23-08-1291-LIV 2 Quarkslab SAS

Then, Section 7 describes the results of the applied code assessment, using manual review and
dynamic testing with the results summarized in Section 8.

Finally, Section 9 provides a conclusion based on the assessment performed on the security of the
Tari project Bulletproof Plus implementation, with respect to the above-mentioned scope of work.

The security audit was performed from July to September 2023.

2.3 Disclaimer

This report reflects the work and results obtained within the duration of the audit defined for 30
days on the specified scope and as agreed between Tari Labs and Quarkslab in 23-05-1181-PRO
V3.0. Tests are not guaranteed to be exhaustive and the report does not ensure the code is bug or
vulnerability free.

Numerous results in Tari’s Bulletproof Plus [tari_bpp] are based on academic papers
for which we will assume soundness and validity as their review are outside the
scope of this audit.

Ref: 23-08-1291-LIV 3 Quarkslab SAS

2.4 Findings summary

The following table synthesizes the various findings that were uncovered during the audit. The
severity classification given as informative, low, and medium, reflects a relative hierarchy between
the various findings of this report. It depends on the threat model and security properties
considered.

During the time frame of this assessment, no critical vulnerabilities were discovered. The
auditors mostly identified low and informative issues as listed above:

* One low issue related to the integration and maintenance of the Merlin crate;

* Two informative issues related to the curve25519 crate and some warnings related to code

quality.
The different findings have been disclosed to Tari and addressed by them during
e the following pull request [3].

ID Description Category Severity

LOW 1 | The absence of proper maintenance for the | CWE-664: Improper Low
Merlin crate is troublesome and it should be | Control of a Resource
considered by Tari to make their own fork to | Through its Lifetime

maintain it up to date.

INFO 1 | Tari’s fork for curve25519-dalek is behind up- | CWE-664: Improper Info
stream Control of a Resource
Through its Lifetime

INFO 2 | Most of the arithmetic operations, if not all, | CWE-1006: Bad Coding Info
suffer from potential overflow (arithmetic, in- | Practices
dex, or slice)

Ref: 23-08-1291-LIV 4 Quarkslab SAS

https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html

3 Context and scope

This chapter presents the context of the assessment, namely, Tari Labs Bulletproof Plus implemen-
tation and optimizations.

In order to get familiar with the context, the auditors introduce next some key concepts.

3.1 Tari

Tari is an open-source, decentralized blockchain protocol that is built on top of the Monero
cryptocurrency. It was built to enable digital assets to be created, transferred, and managed in a
decentralized and privacy-focused way.

To that purpose, Tari Labs developed the Bulletproofs Plus protocol in Rust on which this crypto-
graphic security audit is focused.

The Bulletproofs Plus implementation is a sensitive part of Tari’s project since the protocol is
mainly used to prove that a transaction is valid without revealing any information about the
inputs or outputs of the transaction, thus providing a privacy protection to end users.

3.1.1 Bulletproofs Plus

Bulletproofs are used in blockchain and cryptocurrency technology to enhance privacy and
scalability. They were first introduced in a paper titled "Bulletproofs: Short Proofs for Confidential
Transactions" by researchers from Stanford University and Blockstream in 2018. Bulletproofs
enable efficient and confidential verification of range proofs, which are essential for ensuring the
correctness of confidential transactions without revealing the transaction amounts.

Bulletproofs provide several advantages over previous cryptographic techniques like zk-SNARKs
(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge). They are more efficient in
terms of computational requirements and do not require a trusted setup, which is a significant
advantage for privacy and security in blockchain applications.

Bulletproofs Plus represents a novel range proof technique, sharing similarities with the foun-
dational Bulletproofs. Both of these range proof protocols are designed to achieve logarithmic
proof sizes relative to the number of bits within the range by employing a recursive inner product
protocol. However, it’s worth noting that while Bulletproofs leverages an enhanced inner product
protocol, Bulletproofs Plus distinguishes itself by employing a weighted inner product protocol.

To summarize, Bulletproof Plus compared to Bulletproof provides, among others:

1. Reduced Size: One of the primary goals of cryptographic improvements like Bulletproof
Plus is to reduce the size of confidential transaction proofs even further compared to
Bulletproofs. This reduction in size helps decrease transaction fees and improves overall
blockchain scalability.

Ref: 23-08-1291-LIV 5 Quarkslab SAS

2. Improved Efficiency: Bulletproof Plus aims to enhance the efficiency of the proof generation
and verification processes, making it faster and less resource-intensive. This can benefit
both users and network validators.

3. Compatibility: It’s crucial for upgrades like Bulletproof Plus to be backward-compatible
with existing transaction formats and protocols to ensure a smooth transition for users and
maintain compatibility with older software.

On top of that, Tari Labs make use of a result provided by two anonymous researchers in [4] that
allows to extend Bulletproofs Plus proofs to accommodate multiple masks.

Finally, the auditors note that some optimizations were directly applied and implemented by Tari
Labs on their Bulletproof Plus Rust implementation [tari_bpp] and for which documentations
were provided through internal RFC [5].

3.2 Scope and methodology

As previously mentioned, the purpose of this cryptographic security review is to verify the proper
implementation of the Bulletproofs Plus protocol, the associated cryptographic properties, and
verify the optimization applied by Tari Labs.

The processes applied for the security review of Tari’s Bulletproofs Plus implementation was as
follows:

1. Deep-dive into the general cryptographic principles behind the algorithms and the different
optimizations.

2. Reconstruction and analysis of the overall specification of the Tari’s BulletproofsPlus imple-
mentation.

3. Assessment of the code quality and implementation with respect to the specification and of
the optimizations with the security requisites.

4. Assessing arithmetic operations conformity, namely in the fork of the curve25519-dalek
crate.

5. Fuzzing for arithmetic overflows.

6. Fuzzing for breach of cryptographic security goals.

Ref: 23-08-1291-LIV 6 Quarkslab SAS

4 Discovery

The first step of the cryptographic security audit was focused on the project code base, documenta-
tions, and specifications discovery. The purpose of the discovery phase is to gain a comprehensive
understanding of the cryptographic system under evaluation and sets the stage for the more
in-depth analysis and testing phases.

It helps auditors build a comprehensive picture of the system, its design, and its potential security
risks. To that end, this chapter briefly presents

1. The documentations review performed to understand the intended functionalities, security
requirements, and design principles.

2. The codebase discovery to gain knowledge towards its quality assessment (see Section 4.4)
and security review (see Chapter 7).

3. The dependency identification to check for proper maintenance and potentially known
vulnerabilities that may impact the audited project.

4.1 Bulletproofs Plus State of the Art

In the section, we describe the different documentations and library that have been studied
by the auditors to build some knowledge base around Tari’s implementation of Bulletproofs
Plus. We first start by listing different resources for understanding better what are range proofs,
Bulletproof, and the main differences between Bulletproof and Bulletproofs Plus. Then, we list
the different papers and internal documents used by Tari in order to produce a Rust Bulletproofs
Plus implementation.

4.1.1 Range Proof and Bulletproof

In order to familiarize ourselves with range proofs and Bulletproof, we scheme through different
resources available. To have a good understanding on the design, the rationale, and the application
of Bulletproof the video from one of the original author at BPASE 2018 [6] is a good starting
point. The documentation of the Dalek crate which is used by Tari Labs for the implementation
of BulletproofsPlus provides some good insides on how range proofs work and more specifically
for Bulletproof [7], as well as a blog post made by one of the main contributor of the Rust
implementation of Bulletproof [8].

4.1.2 Bulletproofs Plus

Bulletproofs Plus was introduced by Chung et al. in a preprint article in 2020 [2]. There exists a
nice blog post explaining the main differences between Bulletproof and Bulletproofs Plus and
efficiency comparison by Suyash Bagad [9].

Ref: 23-08-1291-LIV 7 Quarkslab SAS

4.1.3 Tari’s BulletproofsPlus

The two major changes in Tari Labs implementation of Bulletproofs Plus come from both the
appendix of a preprint written by two anonymous authors [4] and Tari’s internal RFC documen-
tation [5].

4.2 Code Structure

The Bulletproof Plus Rust implementation is composed of 3 main directories:
1. src,
2. benchmark,
3. tests.

The other directories and files reported by the tree command are considered miscellaneous
(versioning scripts, code quality, etc.).

> tree -I target

| -— CHANGELOG.md

|-- Cargo.lock

|-- Cargo.toml

|-— LICENSE

| -— README.md

| -— benches

| |-- generators.rs

| | -— range_proof.rs

|-- lints.toml

| --— rust-toolchain.toml

|-- rustfmt.toml

|-- scripts

| | -— cargo-version-updater.js
| |-— file_license_check.sh
|-- src

| | -— commitment_opening.rs
|-- errors.rs

| --— extended mask.rs

| -— generators

| | -— aggregated_gens_iter.rs
| | -— bulletproof_gens.rs
| | -— generators_chain.rs
| |-- mod.rs

| | -— pedersen_gens.rs

|-- inner_product_round.rs
|-- 1ib.rs

| -— protocols

| | -— curve_point_protocol.rs
| |-- mod.rs

| | -— scalar_protocol.rs

Ref: 23-08-1291-LIV 8 Quarkslab SAS

| |-- transcript_protocol.rs
| -- range_parameters.rs

| -— range_proof.rs

| -- range_statement.rs

|-- range_witness.rs

| -— traits.rs
| -— transcripts.rs
| -— utils

|

|

|

|

|

| | -— ristretto.rs
|

|

|

| | -- generic.rs
|

| -- mod.rs
| | -— non_debug.rs
|-- test_coverage.sh
|-- tests
| -— ristretto.rs

8 directories, 38 files

4.2.1 src/

The src/ repository is the core of the Bulletproofs Plus Rust implementation. This is where the
two main functions for inner products and range proofs are defined. This is where the generators,
the protocols (based on Merlin transcripts), the cryptographic utilities, and the implementa-
tion for Ristretto for Curve25519 are defined. The key files are src/inner_product_round.rs,
src/range_proof .rs, which implements the two main protocols.

4.2.2 benchmark/

The benchmark repository is composed of benchmarking of range proof functions (create rp,
verify rp, verify batched rp) for different n: ng.,.; and ngq.

The full spectrum of benchmarks are commented and not by default, most likely for efficiency
reasons as the full spectrum can be quite extensive.

4.2.3 tests/

The tests repository is only composed of one file called ristretto.rs. That can be a bit counter-
intuitive since it only represents 4 tests out of the around 30 present in the projects. Most of the
tests are done inside the different src files and not in this repository.

The 4 tests done on different types of proofs:
1. non-aggregated single proof multiple bit lengths,
2. non-aggregated multiple proofs single bit lengths,
3. aggregated single proof multiple bit lengths,
4

. and mixed aggregation multiple proofs single bit length.

Ref: 23-08-1291-LIV 9 Quarkslab SAS

4.3 Dependencies

4.3.1 Merlin’s Transcript

Merlin is a Rust crate authored by Henry de Valence [10] to construct transcripts, for instance to
be used for zero-knowledge proofs, by automating the Fiat-Shamir transform based on STROBE.
One of the main advantages in using Merlin is the domain separators that ensure challenges to be
bound to the statements to be proved, which when properly used allows to avoid replay attacks
(see Section 5). The last version is from two years ago and does not seem to be maintained.

LOwW 1 Merlin’s crate is of outmost importance for the security of Tari’s implementation.
The absence of maintenance is troublesome and it should be considered by Tari
to make their own fork to maintain it up to date.

Category = CWE-664: Improper Control of a Resource Through its Lifetime
Rating Impact: Supply Chain Exploitability: None

4.3.2 tari-curve25519-dalek

Tari’s Bulletproofs Plus implementation uses their own fork of the curve25519-dalek crates [11],
named tari-curve25519-dalek. The current version is v4.0.3, which was not updated since
July 12th. The fork is not up to date with latest version of the curve25519-dalek crate.

We ran a diff between the two versions using the Meld diffing tool. The changes are minor and
are there to adapt some of the codes to the specifically tailored case of Tari. However, we noticed
that the latest version of Dalek has a different implementation of some arithmetic operations such
as in the Montgomery scalar multiplication where an other algorithm is used (Algorithm 8 of
Costello-Smith 2017).

The fork version from Tari should be kept up to date, specially if security patches are applied on
the upstream repository.

INFO 1 Tari’s fork for curve25519-dalek is behind upstream
Category CWE-664: Improper Control of a Resource Through its Lifetime
Rating Impact: Supply Chain Exploitability: None

Ref: 23-08-1291-LIV 10 Quarkslab SAS

https://cwe.mitre.org/data/definitions/664.html
https://cwe.mitre.org/data/definitions/664.html

4.4 Code quality

One of the first things we like to do when we encounter a Rust project is to have some ideas about
the code quality. Code quality is an important aspect of the review for the following reasons:

* It provides an overview of the project implementation in terms of memory and concurrency
safety and potential errors that could lead to bugs and/or potential vulnerabilities.

* It assesses the code maintainability and auditability which is important in terms of security
practices, especially for open-source projects, and also helps auditors determine the next
steps of the security assessment.

* It evaluates the project’s dependencies management, which is crucial for ensuring that the
code base is not vulnerable via a known security issue in third-party libraries.

Overall, a well-maintained and high-quality project provides community trust and can lead to
valuable code reviews, contributions, and security audits.

To that end, several tools from the Rust ecosystem are useful to assess the project’s code quality,
as presented next.

4.4.1 cargo audit

Running cargo audit gives some hints on the state of the dependencies.

gb@tari-bpp:~/bulletproofs-plus > cargo audit
Fetching advisory database from
— “https://github.com/RustSec/advisory-db.git"
Loaded 555 security advisories (from /Users/qgb/.cargo/advisory-db)
Updating crates.io index
Scanning Cargo.lock for vulnerabilities (116 crate dependencies)

We can see here than this project use no external dependencies that have known issues.

External dependencies management shows no issues which is a good point.

4.4.2 cargo geiger

Incorrect use of unsafe code can lead to several issues (e.g., memory safety, undefined behaviors)
which are some of the problems Rust aims to prevent in safe code. Therefore, unsafe code
should be avoided when possible or used very carefully in addition to thorough testing and
documentations to ensure correctness.

cargo geiger checks if dependencies use unsafe code. The output is quite long and can be
checked in Appendix A.1. We can notice that several dependencies are using unsafe code. However,
this does not mean that the code is inherently unsafe.

Ref: 23-08-1291-LIV 11 Quarkslab SAS

Type | Occurrence Location

Arithmetic 3 22:13, 29:13, 35:20
Index 2 30:19, 30:19
Slicing 0 -

Table 4.3: src/generators/aggregated gens iter.rs: 5 warnings

Type | Occurrence Location |
Arithmetic 0 -

Index 2 75:13, 78:13

Slicing 0 -

Table 4.4: src/generators/bulletproof gens.rs: 2 warnings

It is to be noted that the bulletproofs-plus project does not use the forbid unsafe attribute, which
is a rule that forbids unsafe code in the current crate. However, we can see that the crate does
not use any unsafe code.

Project’s crate does not use any unsafe code which is a good point.

4.4.3 cargo clippy

cargo clippy is a linter to catch common mistakes and improve code quality in Rust. The output
is quite long as we caught 220 warnings using the following arguments that can be checked in
Appendix A.2. In order to have a better understanding of the numerous warnings caught by
cargo clippy, we regrouped them into their respective described category. We noticed that only
3 types of warnings occur, the three of them being related to arithmetic operations, which are
the following ones:

110 occurrences: arithmetic operation that can potentially result in unexpected side-effects',

e 95 occurrences: indexing may panic?,

e 22 occurrences: slicing may panic®.

More precisely, around 90% of the warnings (200 out of 220) are occurring in only 2 files:
src/inner_product_round.rs (60 warnings) and src/range_proof .rs (140 warnings). This
is not surprising as the main cryptographic operations related to Bulletproofs Plus are made in
those two files.

To summarize, the findings are categorized as informative since the client was made aware of
them in early stages of the audit and started working on the fixes. We made tables for each files
on the number and types of warnings caught by cargo clippy and where to find them, and
provided below.

'https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects
2https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing
3https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

Ref: 23-08-1291-LIV 12 Quarkslab SAS

Type

Arithmetic

22

Occurrence ‘ Location
86 :90,111: 36,112 : 36,146 : 26
25,151 :
: 28,162 :
43,205 :
22,239 :
132,263 :

149 :
161
187 :
238 :
261

17,152 : 17,160 : 28
98,164 : 30,186 : 43
9,210: 13,211 : 13

22,245 :
13

55,260 :

24

Index

30

146 :
148 :
151
161
179 :
210 :
211
263 :

27,147 :
73,148 :
:41,152:
032,164 :
30,184 :
28,210 :
155,238 :
50,263 :

18, 148 :
92,149 :
23,152
30,164 :
13,187 :
51,211 :
14,239 :
13

37,148
45,151

: 40,160
39,164 :
: 20
1 28
: 30

47,210
20,211
14,263

: 56
124
: 32

50

Slicing

171 :
175 :

19,172 :
27,176 :

19,173 :
27,177 :

10,174 :
1 27

27,178

19

Table 4.5: src/inner_product_round.rs: 60 warnings

Type | Occurrence Location |
Arithmetic 2 66:22, 79:22

Index 5 66:23, 66:13, 79:23, 79:31, 79:13

Slicing 2 52:9, 52:44

Table 4.6: src/protocols/curve_point_protocol.rs: 9 warnings

Type | Occurrence Location |
Arithmetic 2 54:22, 65:22

Index 5 54:22, 54:13, 65:22, 65:29, 65:13

Slicing 0 -

Table 4.7: src/protocols/scalar_protocol.rs: 7 warnings

Ref: 23-08-1291-LIV

Quarkslab SAS

Type

Arithmetic

80

' Occurrence | Location
234 :
273 .
283 :
300 :
389 :
496 :
546 :
992 :
599 :
608 :
622 :
640 :
667 :
673 :
682 :
695 :
704 :
843 :
862 :
869 :

43,235

33, 552

24,593 :
25,600 :
24,612 :
32,625 :

33,641

74,815

27,848 :
74,865 :

81,871

: 43,243
24,276 :
40,287 :
13,305 :
16,390 :
31,498 :

47,278
20, 291

26, 400

: 43,250 :
121,279 :
124,297 :
13,307 :
129,489 :

17,361

27
27
13

: 26

13

9,510 : 35,512 : 13

: 30,585
36,594 :
17,601 :
1 37,621
13,634 :
: 33,643
24,670 :
17,674 :
32,685 :
34,697 :
: 42,836
43,859 :
19,867 :
: 81,877 :

28,619

25,671

34, 699

. 28, 586 :

40,596 :
17,605 :

49,638 :

£ 29, 665 :
: 25,672 :
17,675 :
21, 690 :

17,681 :
13,692 :

134,702 :
132,842 :
121

74,861
71,868 :
28,900 :

28
26
44

125

29
29
17
17
17
70
28

70
32

Index

50

237 :
300 :
359 :
365 :
419 :
481 :
577 :
608 :
667 :
673 :

59,279 :
29,307 :
73,360 :
: 68,395 :
37,478 :
133,483

63,385

21,478 :

34,482

30,612 :
35,670 :
147,692 :

17,692

27,287 :
48,307 :
: 26,361 :

26, 361

28, 640
44, 671

: 46,641
134,672 :

26, 291
48,307 :

13,396 :
73,479 :

:23,512:
103,593 : 36,593 : 52,594 : 40, 594 : 60
: 46,667 :
17,673 :
34,714 :

17,713 :

- 24, 300 :
75,359 :
60, 363 :
13,411 :
26, 480 :
75,577 :

22
37
32
21
32
86

24
65
33

Slicing

10

841 :
868 :

71,859 :
64, 869 :

68, 862

: 68, 866 :
75,871 :

75,877 :

64, 867 :
1 48

22,905

65

Table 4.8: src/range_proof.rs: 140 warnings

Type | Occurrence Location |
Arithmetic -

Index 1 27:32

Slicing 0 -

Table 4.9: src/range witness.rs: 1 warning

Ref: 23-08-1291-LIV

14

Quarkslab SAS

Type | Occurrence Location

Arithmetic 1 74:17
Index 0 93:32, 100:31
Slicing 2 -

Table 4.10: src/utils/generic.rs: 3 warnings

INFO 2 Numerous arithmetic operations suffer from potential overflow (arithmetic, index,
or slice)

Category CWE-1006: Bad Coding Practices

Rating Impact: Code quality Exploitability: None

Ref: 23-08-1291-LIV 15 Quarkslab SAS

https://cwe.mitre.org/data/definitions/1006.html

5 Evaluation Overview

5.1 Hypothesis

The following hypothesis has been taken into account in order to evaluate Tari’s Bulletproofs Plus
implementation.

0 Sound Protocols

The underlying protocols coming from both papers, BulletproofsPlus [2] and
Zarcanum [4] are sound: we do not evaluate the paper cryptographic content.
Please note that for BulletproofsPlus, an audit was made where the security proofs
of BulletproofsPlus were backed up [12].

0 Sound Merlin crate

The Merlin crate is sound: we do not evaluate the external crate that allows to use
Fiat-Shamir transform on the BulletproofsPlus protocol but rather how it is used.

We are not considering side-channel attacks on the device manipulating secret values

0 Side-channel attacks out-of-scope
(namely, the prover’s device).

5.2 Threats and Security checks

There are three main security paradigms in Bulletproofs Plus, which are the followings:

0 Perfect completeness
which means that an honest prover will always convince an honest verifier on a true
statement.

which means transcripts can be perfectly simulated and leak no information whatso-

Q Perfect Honest Verifier Zero-Knowledge
ever.

Ref: 23-08-1291-LIV 16 Quarkslab SAS

Q Computational Withess-Extended Emulation

which means that there exists an emulator (that’s allowed to rewind the prover to
any state, and to supply the verifier with fresh randomness) that extracts a witness
from the (modified) transcript.

For simplicity, it is a generalization of the notion of perfect soundness where it is
impossible to prove a false statement.

One of the main threats in interactive protocols such as Bulletproofs Plus is replay attacks and
transferability: ones need to avoid that a proof is copied and used in a different context by the
verifier. It is therefore of most importance to verify that the transcripts are properly formed and
used in Tari’s BulletproofsPlus implementation.

5.3 Methodology
The processes applied for the security review of Tari’s Bulletproofs Plus implementation were as
follows:

* Deep-dive into the general cryptographic principles behind the algorithms and the different
optimizations.

* Reconstruction and analysis of the overall specification of the Tari’s BulletproofsPlus imple-
mentation.

* Assessment of the implementation with respect to the specification and of the optimizations
with the security requisites.

* Assessing arithmetic operations conformity, namely in the fork of the curve25519-dalek
crate.

* Assessing nonce generation behavior.
* Fuzzing for arithmetic overflows.
* Fuzzing for breach of cryptographic security goals.

The main objective was to uncover potential cryptographic vulnerabilities and/or bugs and to
assess the resiliency of the project against the above-mentioned cryptographic threats.

5.4 Topics covered

After a proper discovery of the code base as detailed in Section 4, a priority assessment has been
established on the severity of each part of the code.

5.4.1 Range Proof and Inner Product Round

These are the two main functions implementing the Bulletproofs Plus protocols. Any mistakes
or non-compliance with the specification will most likely infer a loss in one of the three main
security properties.

Ref: 23-08-1291-LIV 17 Quarkslab SAS

Their implementations can be found in src/range_proof.rs and inner_product_round.rs
respectively.

5.4.2 Transcripts

The functions allowing the protocol to be non-interactive and upon which most of the security
against replay attacks relies. The implementation of those functions relies on the use of the
Merlin’s crate.

Definition of transcript functions can be found in src/transcript.rs, and are called and used
in different parts of the code (mainly in the two protocol functions aforementioned).

5.4.3 Generators

Different types of generators are needed in range proofs of the Bulletproof type to avoid the need
of a trusted setup. The proper generation and definition of such generators have an impact in the
security of the protocol.

Their implementations can be found in the generator subfolder which defines structures con-
taining all the generators needed for aggregating up to m range proofs of up to n bits each.

5.4.4 Curve25519 Operations

The main arithmetic cryptographic operations are curve operations such as scalar multiplication
and multi-scale exponentiations which are defined in an external crate forked and modified by
Tari’s developers. Improper implementation of such operations can lead to vulnerabilities.

The APl functions with the tari-curve25519-dalek are defined in
protocols/curve_point_protocols.rs.

5.5 Protocol Specification

During the discovery and the code review, we noticed that no overall specifications of the protocols
implementation were provided. Namely the Rust implementation is based on a mash-up of
two academic papers, different internal optimizations, an external crate for the Fiat-Shamir
transformation, a home-made fork of the Dalek crate which performs the arithmetic cryptographic
operations. The internal documentation in RFC-0181 only described a portion of the optimization
made by Tari themselves, since we found out that some of them were directly in comments of the
code or in undocumented changes in the Dalek crate.

While we asked for a proper specification in early stages of the audit and we were told that Tari
did not want to reproduce what was directly taken from papers, we do believe after carefully
doing the evaluation that not having access to a proper specification of the overall protocols is a
step backwards to a proper security audit. Discovering new design decisions during code review
should be prohibited and can be seen as something orthogonal to Kerckhoffs’ principle, which is
a fundamental concept in cryptography.

Ref: 23-08-1291-LIV 18 Quarkslab SAS

Moreover, a proper specification will allow the code to be clearer and to have unified variable
notations, which sometimes made the code review troublesome.

In the following section, we tried to reproduce a comprehensive specification of the overall
implementations based on the two academic papers Bulletproofs Plus, Zarcanum, and Tari’s
internal RFC. The provided specification was also assessed as part of this cryptographic security
audit.

We recommend to write a proper specification of the implementation that involves
all design choices.

Ref: 23-08-1291-LIV 19 Quarkslab SAS

6 Protocol Specification Analysis

The security analysis of the cryptographic protocol specifications is a crucial step for the security
auditors in order to:

* Understand the modification with respect to previous work and scientific publications on
the Bulletproof and Bulletproof Plus [2] protocols.

* Ensure that the cryptographic algorithms and protocols are designed with security in mind.
* Assess the specifications to identify potential vulnerabilities and evaluate the attack surface.
* Finally, to evaluate the resiliency against mentioned threats (see Section 5.2).

As explained in Section 4, the Bulletproofs Plus Rust implementation is based on the Bulletproofs
Plus paper [2], the Zarcanum paper [4], and some in-house optimizations [5]. In this section, we
provide a detailed specification and associated security analysis of the final protocol, when all
these results are combined together.

The different colors illustrated in the following figures are used to specify the different features
added to the original Bulletproofs Plus:

Please note that on the following figures, we described the case of m aggregated
proof, and the non-aggregated case is simply the case where m = 1.

e blue: Zarcanum’s commitment extensions,

. : Tari’s global changes and optimizations,

* red: Tari’s specific use-case tailored optimizations.

* teal: Optimization informally described in BulletproofPlus [2].

In the following, we provide a more in-depth explanation of these features.

6.1 Notation

Depicted in in our specifications, they only concern the Figure 6.2 where the variable A
was replaced with A’ to avoid confusion with the variable A from the range proof. We decided to
discard the change of notation for the basis from [5] in this description as they are only adding
confusion to the comprehension of the different papers [2, 4] and did not seem to be taken into
account in the implementation (more details in Section 7).

6.2 Commitments Extensions

In the appendixes of a preprint [4], two anonymous authors proposed a way to extend commit-
ments to values using multiple masks.

Ref: 23-08-1291-LIV 20 Quarkslab SAS

Relation:
{&,heG", g,h1,....,hn, PEG,a,bEZy,a1,...,00 €Ly :
P =gh g it g}
Prover
Input: (g,h,g,h;,V,v,7,)
Output: ¥

For j € [1,m],

Letd; = (0,...,0,2",0,...,0),
Chooses «; < (Z,, or shared_seed)
Setay, € [0,1]"s.t (a,d;) = v; ,
ap=a;— 1" ez

Compute A = g h?" pY

Verifier
Input: (g7 h7 g, hi7 V)
Output: Accept or Reject

A,
Y <$ 2Ly, 2 <$ 7y,
Y,z
m
Letd =) 2% -d,
j=1
o —mmn T 2 mnt1
Compute A—A. g—l"m~2hd0y +1 z (H(ij — Ui - g)z J)ym.n
j=1
(amn gmny.,— zy™nFl_(qmn gmny, 2 cG
Compute:
ap =ay — <1mn72> S sz
an—ap+doy™ + 1" .z € I
m
& =i+ 27yt ez,
j=1
Run ZK-WIPjmn (g, h, g, hi, A, &y, g, &;)
Figure 6.1: Tari’s Zero-Knowledge Argument for Range proof v; € [0,2" — 1] for j € [1,m].

Ref: 23-08-1291-LIV 21

Quarkslab SAS

Prover Verifier
Input: (g7 h7 9, h’i7 Pa a, b7 Oéi) Input: (ga h7 9, h’i7 P)
Output: @ Output: Accept or Reject

Letr,s,0;,1m; <$ (Z, or shared_seed)
Compute /' = g'h®g"@vPHs@apdi ¢ G, e sy
B =g R’ cG

, B
e
Compute 7’ =r+a-e€Z,
s =s+b-e€Z,
Sl=mi+6i-eta-e €,
/ / !
', 80; Accept if:
m) it s log, (mmn) 2
(H(V7 — Umin 'g)/‘)U AT (H Lj ’ RJ'
j=1 j=1
n>1 gr'/<~,~0'+(12(,z~1’””’)h.ﬂlsi.a’feiz(z+doy7yy”)
n P Oys —e2pde2ymn T ST 26D, st
Letn = 5,a = (a,a,),b = (b1, o). g O ety Y T S umin
g = (8,,82), and h = (h;, hy). Reject otherwise
Let dr;,dRri <$ (Zy, or shared_seed)
Compute ¢, = a; O, by € Z,
CRr = (yﬁag) @y b1 c Zp
L=gj ™hPgrh G
R=g!" =l gorptn ¢ G
LR e <s$ Z;
e

Compute § = g¢ o gg'y‘ﬁ €G"
h=hioh eG"
P=L PR G

Compute a = ~e+(a2.yﬁ’).6*1 c ZZ
B:b-e_1+b2-e€Z;L
a=dpi-e*+a+dri-e? €L,

Run ZK_WIP:ljﬁ (§7 fl? g7 h7 p? é? B’ OA{)

'6'7_>A/(ﬁB _

Figure 6.2: Tari’s Zero-Knowledge Argument for WIP relation.
Ref: 23-08-1291-LIV 22 Quarkslab SAS

This result is done first by showing that the BulletproofsPlus [2] protocol can be modified in
order to use one additional mask, whose proof followed the same rationale as in the Bulletproofs
Plus article proof. Then, by induction, they can extend the result to multiple masks. This only
implies slight modification of the BulletproofsPlus protocol (namely adding some indexes to the
corresponding values) and are depicted in blue in Figure 6.1 and 6.2.

6.3 Minimum Value Assertion

Depicted in in our specifications, this optimization proposed by Tari in RFC-0181 [5] is a
change of variable in the prover’s commitment in order to insert a lower bound different than 0
and change the upper bound allowed for value blinding. This lower bound, v.,,;,, is specified by
the prover, which then uses v — v,,;,, as the value witnesses and transmits the lower bound to the
verifier. The verifier can verify the proof by using V' — v,,,;», G as the commitment.

6.4 Batch Verification

In order to preserve precious CPU time, Tari uses the batch verification techniques informally
described in BulletproofsPlus [2], where each proof verification function gets a corresponding
random multiplicative scalar weight. This allows to combine the verification of each proof into a
single multi-scalar multiplication.

This technique is depicted in teal in our specification. To avoid confusion with the already existing
notation s and s, we decided in this report to rename the variables s and s/, o and o/, namely

we have that o = (071,...,04), ¢’ = (01,...,0,) € Z} where
1 logy(n) b(ig) logy(n) bi)
2y} / —o(%,7
o; = (yi—l) . H e; " and o; = H € :
j=1 Jj=1

For batch verifications, we can then add the random weights to the teal equation from Figure 6.2

as follows:
#proofs

Z w; - Proof; =* 0.
=1

Where Proof; corresponds to the right-hand side of the teal equation minus the left-hand side.

6.5 Mask Recovery

For the case of non-aggregated range proof for a range assertion of a single commitment, Tari
introduced in RFC-0181 [5] a way to sample the different nonces of the proof via a shared nonce
seed. This allows for the verification to recover the masks ~; as follows:

log(n)—1
Vi = ((5; — N — (51‘6)6_2 — o — Z (e%dL,j,i + engJJ)y—(n-‘rl)z—Q).
7=0

Ref: 23-08-1291-LIV 23 Quarkslab SAS

Sampling for the shared nonce seed when doing a non-aggregated range proof for a range
assertion of a single commitment is depicted in red.

6.6 Sum Optimization
This optimization proposed by Tari in RFC-0181 [5] is based on mathematical results from

geometric series which allows to speed up some computations. This optimization is depicted in
as well and consists in replacing sums of d; as follows:

m—1
(1 d) = (27— 1) Y 220
7=0

Ref: 23-08-1291-LIV 24 Quarkslab SAS

7 Code Review

This section presents the results of the code review performed on Tari’s Bulletproofs Plus Rust
implementation. The purpose of the code review was mainly to assess the implementation with
respect to the specification as detailed in Chapter 6 as well as the resiliency of the implementation
against the cryptographic threats that may apply, as detailed in Section 5.

Overall the code is well written and is for the most part consistent with the specifi-
cations. When necessary, functions have unit tests implemented.

(r') The unit tests mostly cover edge cases of the code and could also verify that the

S corresponding code is doing the correct functionalities.

We noticed that some implementations decisions on key elements that can have significant impact
on the security are detailed in comments of the code but not in Tari’s internal documentations,
which can create a delta between what is implemented and the specification.

A

Some notations are sometimes confusing by either not following the specifications or the papers
upon which the protocol is based (for instance the different generators) which can make the
comprehension and the reading of the code quite cumbersome. Moreover, naming of variable
should follow the same convention throughout the code. For instance, curve Point is usually
denoted with upper-case letters in cryptographic codes and in this implementation but we noticed
several cases where they were in lower cases.

The auditors suggest Tari to detail security-related key elements in their documen-
tations in addition to what is already detailed in the code’s comments.

In the followings, we go into detail on some portions of the code that raised attention during
code review.

7.1 Basis notations

Please note that even though files do not appear in the following, all the source
material involved in the considerations from Section 5 was carefully reviewed.

There are three notations for the different basis involved in the Bulletproof Plus protocol between
the academic papers, Tari’s internal RFC, and the implementation. This has made the review quite
cumbersome and require more assessment time. Moreover, in src/inner_product_round.rs,
the notation hi_base_hi is used when the hi_base basis is split into two where the second hi

Ref: 23-08-1291-LIV 25 Quarkslab SAS

means higher part. This makes it even more confusing specifically when the h basis is also the ¢
basis in other documents.

7.2 benchmark/

We recommend to use coherent notations in the code that correspond to the imple-
mentation’s descriptions.

Commented parameters for full spectrum are not updated with new values, and has been done
since then by Tari. The benchmarks were ran on our laptops and seemed coherent with the results
presented in Tari’s internal documentations [5].

7.3 transcript.rs

for item in &statement.minimum_value_promises {
if let Some(minimum_value) = item {
transcript.append_u64(b"vi - minimum_value", *minimum_value) ;
} else {
transcript.append_u64(b"vi - minimum_value", 0);

}

The message of the label here is inconsistent with what is appended to the transcript: the minimum
value is appended and not vi - minimum value.

We added a test to verify that the values were correctly unpacked by the transcript as the function
calling the Merlin’s transcripts function seemed like they were copying the same two values.

fn test_transcript_point_a_challenges_y_z() {

let mut transcript = Transcript::new(b'"test");
let a: RistrettoPoint = RistrettoPoint::from_uniform_bytes (&buf) ;

let (y, 2z) = crate::transcripts::transcript_point_a_challenges_y_z(&mut
— transcript, &a.compress()).unwrap();
assert_ne! (y, z);

Overall, no issues were found on transcript.rs which is a good point.

7.4 transcript_protocol.rs

Ref: 23-08-1291-LIV 26 Quarkslab SAS

/// Compute a “label ed challenge wvariable.
fn challenge_scalar (&4mut self, label: &'static [u8]) -> Result<Scalar,
— ProofError>;

fn challenge_scalar(&mut self, label: &'static [u8]) —-> Result<Scalar,
< ProofError> {
let mut buf = [0u8; 64];
self.challenge_bytes(label, &mut buf);
let value = Scalar::from_bytes_mod_order_wide(&buf) ;
if value == Scalar::ZERO {
Err (ProofError: :VerificationFailed(
"Transcript challenge cannot be zero".to_string(),
)
} else {
Ok (value)
}

The comment on the signature of the function is confusing since no computation
are involved there just the filling of a value.

‘ | Overall, no issues were found on transcript_protocol.rs which is a good point.

7.5 bulletproof_gens.rs

/// # Extensible Generator Generation

/77

/// Instead of constructing a single vector of size “m¥n’, as described in the

— Bulletproofs paper, we construct each

/// party's generators separately.

/177

/// To construct an arbitrary-length chain of generators, we apply SHAKE256 to a
— domain separator label, and feed each

/// 64 bytes of XOF output into the curve hash-to-group function. Each of the “m’
— parties' generators are

/// constructed using a different domain separation label, and proving and

— wvertfication uses the first ‘n° elements of

/// the arbitrary-length chain.

/77

/// This means that the aggregation size (number of parties) is orthogonal to the
— rangeproof size (number of bits),

/// and allows using the same ‘BulletproofGens ' object for different proving

< parameters.

V4

Ref: 23-08-1291-LIV 27 Quarkslab SAS

/// This construction s also forward-compatible with constraint system proofs,
— which use a much larger slice of the

/// generator chain, and even forward-compatible to multiparty aggregation of
— constraint system proofs, since the
/// generators are namespaced by their party index.

This technique is not detailed in Tari’s internal specification. On the code, no bugs nor vulnerabil-
ities were discovered during the time frame of the review.

A
1

7.6 pedersen_gen.rs

We recommend Tari Labs to integrate this technique into their specifications.

Overall, no issues were found on bulletproof_gens.rs which is a good point.

/// Represents a pair of base points for Pedersen commitments
V4
/// The Bulletproofs timplementation and API is designed to support pluggable bases
— for Pedersen commitments, so that
/// the choice of bases is not hard-coded.
V4
/// The default generators are:
V4
/// * "h_base’: the curve basepoint;
/// * “g_base_vec : the result of domain separated SHA3-512 (hash of untique
— tndezed strings)
/// hash-to-group on input ‘B_bytes .
#[derive(Clone, Debug, PartialEq)]
pub struct PedersenGens<P: Compressable> {
/// Base for the committed wvalue
pub h_base: P,
/// Compressed base for the committed value
pub h_base_compressed: P::Compressed,
/// Base for the blinding factor wvector
pub g_base_vec: Vec<P>,
/// Compressed base for the blinding factor wvector
pub g_base_compressed_vec: Vec<P::Compressed>,
/// Blinding factor exztension degree
pub extension_degree: ExtensionDegree,

A user of Tari’s Bulletproof Plus implementation should always ensure that the g base_vec comes
from the hash of unique indexed strings. This should be stated in the specification and not in
comment of the code.

Ref: 23-08-1291-LIV 28 Quarkslab SAS

Overall, no issues were found on pedersen_gen.rs which is a good point.

1

7.7 range_proof.rs

No bugs nor vulnerabilities were discovered and the code is compliant with the specification.

We noticed that in the provided example in comments of the code on the usage of the range proof
functions, the blinding masks are all the same which we believe can be problematic and leaking
unwanted information.

1

Overall, no issues were found on range_proof .rs which is a good point.

Ref: 23-08-1291-LIV 29 Quarkslab SAS

8 Resiliency tests

Resiliency tests performed dynamically in a Rust project play an important role in assessing and
improving the project’s resiliency against applicable threats. To that end, the auditors apply
various failure scenarios and measure the code response, in order to evaluate the reliability,
availability, and overall robustness, with a focus on the described threats (see Section 5.2). Such
dynamic tests were also prioritize thanks to the warnings found during code quality assessment
(see Chapter 4.4).

8.1 Fuzzing for Arithmetic Overflow

As depicted in Section 4.4, the cargo clippy command shown a numerous number of warnings,
all of them regarding some potential overflows either in the underlying arithmetic or the array/slice
indexes. While we checked a certain amount of them during code reviews, we still decided to
make a fuzzer run during several days on the proper operations to see if we could cause any
panics.

The applied fuzz-testing did not reveal any bugs nor overflows, which is a good
point.

8.2 Playing with Nonce Generation

We used some internal tools to see if the nonce generation were behaving properly since they are
a main point of interest in cryptographic protocols. Our test did not reveal, to the best of our
knowledge, any flaws.

More specifically, we played a bit with the nonce function in src/utils/generic.rs that allows to
generate a deterministic nonce from a label and optional two indexes.

The deterministic nonce generation seems to be properly done.

8.3 Fuzzing for difference in curve25519-dalek

In order to validate that the changes made to the curve25519-dalek crate do not impact the
implementation of the underlying arithmetic for the Bulletproofs Plus protocols, we did a cartog-
raphy of all the functions in the source code of Tari that comes from the tari-curve25519 crate
and does arithmetic operations. The list is the following:

* multiscalar_mul in src/generators/perdersen gen.rs,
* vartime_multiscalar_mul in src/inner product round.rs,

* batch_invert in src/range proof.rs.

Ref: 23-08-1291-LIV 30 Quarkslab SAS

For each of these functions, we fuzzed on both the Tari and original crate ones in order to catch a
mismatch, namely we made differential fuzzing. After several days, we could not find any issue
to the behavior of Tari crate with respect to original one.

We did not find any difference between the two Dalek crates in terms of input/output
behavior.

Ref: 23-08-1291-LIV 31 Quarkslab SAS

9 Conclusion

To conclude, Quarkslab made a discovery of Tari’s Bulletproofs Plus implementation for which
a complete specification was produced. Based on the latter, an audit methodology and tests
plans were defined in order to focus the security audit on relevant items within the allocated
time frame. Using the defined security perimeter and tests, the audit unveiled some low and
mostly informative issues in the codebase, but nothing critical or exploitable in the end. However,
Quarkslab auditors note that for use case such as cryptographic protocols, every design choices
should be reported in any kind of documentation in order for external users and reviewers to
have a clear understanding of the underlying implementation.

Overall, it was a pleasure to work with Tari experts and maintainers on this audit, they were very
helpful, security-minded, and willing to make the project more resilient.

Ref: 23-08-1291-LIV 32 Quarkslab SAS

Bibliography

[1]
[2]

[3]
[4]
[5]
[6]

[7]

[8]
[9]

[10]
[11]

[12]

Tari Labs. Tari Labs Bulletproofs Plus repository. URL: https : //github . com/tari-
project/bulletproofs-plus (visited on Sept. 1, 2023) (cit. on p. 2).

Heewon Chunga Kyoohyung Han Chanyang Ju Myungsun Kim and Jae Hong Seo. Bul-
letproofsPlus: Shorter Proofs for Privacy-Enhanced Distributed Ledger. Cryptology ePrint
Archive, Paper 2020/735. 2020 (cit. on pp. 2, 7, 16, 20, 23).

Tari Labs. Quarkslab Audit. URL: https://github.com/tari-project/bulletproofs-
plus/pull/91 (visited on Oct. 13, 2023) (cit. on p. 4).

sowle and koe. Zarcanum: A Proof-of-Stake Scheme for Confidential Transactions with Hidden
Amounts. Cryptology ePrint Archive, Paper 2021/1478. 2021 (cit. on pp. 6, 8, 16, 20).
RFC-0181/BulletproofsPlus. URL: https : / / rfc . tari . com / RFC - 0181 $ %5C _
$BulletproofsPlus.html (visited on Aug. 3, 2023) (cit. on pp. 6, 8, 20, 23, 24, 26).
Benedikt Bunz. Bulletproofs - BPASE 18. URL: https://www.youtube.com/watch?v=
gZjDKgR4dw8 (visited on Sept. 1, 2023) (cit. on p. 7).

Isis Agora Lovecruft and Henry de Valence. Range proof for inner product. URL: https:
//doc-internal.dalek.rs/bulletproofs/notes/range_proof/index.html (visited
on Sept. 1, 2023) (cit. on p. 7).

Cathie Yun. Building on Bulletproofs. URL: https://cathieyun.medium.com/building-
on-bulletproofs-2faa58afOba8 (visited on Sept. 1, 2023) (cit. on p. 7).

Suyash Bagad. Comparing Bulletproofs+ and Bulletproofs - Part I. URL: https://suyash67.
github.io/homepage/project/2020/07/03/bulletproofs_plus_partl.html (visited
on Sept. 1, 2023) (cit. on p. 7).

Henry de Valence. Merlin. URL: https://merlin.cool (visited on Sept. 1, 2023) (cit. on
p- 10).

Isis Agora Lovecruft and Henry de Valence. curve25519-dalek. URL: https://crates.io/
crates/curve25519-dalek (visited on Sept. 1, 2023) (cit. on p. 10).

Suyash Bagad, Omer Shlomovits, and Claudio Orlandi. Monero BulletproofsPlus Security
Audit. URL: https://suyash67.github.io/homepage/assets/pdfs/bulletproofs_
plus_audit_report_vl.1.pdf (visited on Sept. 1, 2023) (cit. on p. 16).

Ref: 23-08-1291-LIV 33 Quarkslab SAS

https://github.com/tari-project/bulletproofs-plus
https://github.com/tari-project/bulletproofs-plus
https://github.com/tari-project/bulletproofs-plus/pull/91
https://github.com/tari-project/bulletproofs-plus/pull/91
https://rfc.tari.com/RFC-0181$%5C_$BulletproofsPlus.html
https://rfc.tari.com/RFC-0181$%5C_$BulletproofsPlus.html
https://www.youtube.com/watch?v=gZjDKgR4dw8
https://www.youtube.com/watch?v=gZjDKgR4dw8
https://doc-internal.dalek.rs/bulletproofs/notes/range_proof/index.html
https://doc-internal.dalek.rs/bulletproofs/notes/range_proof/index.html
https://cathieyun.medium.com/building-on-bulletproofs-2faa58af0ba8
https://cathieyun.medium.com/building-on-bulletproofs-2faa58af0ba8
https://suyash67.github.io/homepage/project/2020/07/03/bulletproofs_plus_part1.html
https://suyash67.github.io/homepage/project/2020/07/03/bulletproofs_plus_part1.html
https://merlin.cool
https://crates.io/crates/curve25519-dalek
https://crates.io/crates/curve25519-dalek
https://suyash67.github.io/homepage/assets/pdfs/bulletproofs_plus_audit_report_v1.1.pdf
https://suyash67.github.io/homepage/assets/pdfs/bulletproofs_plus_audit_report_v1.1.pdf

Appendix A
Appendix

A.1 Output of cargo geiger

gb@tari-bpp:~/bulletproofs-plus > cargo geiger --output-format Ascii
Metric output format: x/y

x = unsafe code used by the build
y = total unsafe code found in the crate

Symbols:
D)

?

No “unsafe’ usage found, declares #![forbid(unsafe_code)]
No “unsafe’ usage found, missing #![forbid(unsafe_code)]

I = “unsafe’ usage found

Functions Expressions Impls Traits Methods Dependency

0/0 0/0 0/0 0/0 0/0 tari_bulletproofs_plus 0.3.1
0/0 12/21 13/13 1/1 0/0 |-- blake2 0.10.6
0/0 0/0 0/0 0/0 0/0 | “-- digest 0.10.7
0/0 16/16 0/0 0/0 0/0 I |-- block-buffer 0.10.4
1/1 285/285 20/20 8/8 5/ | | “-- generic-array
— 0.14.7
0/0 5/5 0/0 0/0 0/0 | | |-- serde
— 1.0.176
0/0 0/0 0/0 0/0 0/0 | | | T
— serde_derive 1.0.176
0/0 15/15 0/0 0/0 3/3 | | | [--
— proc-macro2 1.0.66
0/0 4/4 0/0 0/0 0/0 | | | | T
— unicode-ident 1.0.11
0/0 0/0 0/0 0/0 0/0 I I | [—-=
< quote 1.0.32
0/0 15/15 0/0 0/0 3/3 | | | | S
< proc-macro2 1.0.66
0/0 79/79 3/3 0/0 2/2 | | | -— syn
- 2.0.27
0/0 15/15 0/0 0/0 3/3 | | | |--
— proc-macro2 1.0.66
0/0 0/0 0/0 0/0 0/0 | | | |--
— quote 1.0.32
0/0 4/4 0/0 0/0 0/0 | | | T
< unicode-ident 1.0.11
0/0 0/0 0/0 0/0 0/0 | | |-- typenum
-~ 1.16.0
1/1 24/24 0/0 0/0 0/0 | | “-- zeroize
— 1.6.0
Ref: 23-08-1291-LIV 34 Quarkslab SAS

0/0 5/5 0/0 0/0 0/0 (N | |-- serde
— 1.0.176

0/0 0/0 0/0 0/0 0/0) | T

— zeroize_derive 1.4.2

0/0 15/15 0/0 0/0 3/3 o | ==

— proc-macro2 1.0.66

0/0 0/0 0/0 0/0 0/0 7 | [--

< quote 1.0.32

0/0 79/79 8/ 0/0 2/2 [| T-— syn
- 2.0.27

0/0 0/0 0/0 0/0 0/0 DI | -— crypto-common 0.1.6
1/1 285/285 20/20 8/8 5/5 . | |-- generic-array
- 0.14.7

0/0 2/2 0/0 0/0 0/0 [| | -— rand_core 0.6.4
3/7 71/228 1/1 0/0 3/3 [| | | -— getrandom
— 0.2.10

0/0 0/0 0/0 0/0 0/0 7 | | | | |-— cfg-if
- 1.0.0

1/60 10/502 0/2 0/0 5/50 ro Il 1 ~--libc
— 0.2.147

0/0 5/ 0/0 0/0 0/0 [| | “-- serde

— 1.0.176

0/0 0/0 0/0 0/0 0/0) | °-- typenum 1.16.0
0/0 9/9 0/0 0/0 0/0 b “-- subtle 2.5.0

0/1 176/193 0/0 0/0 0/0 ! |-- byteorder 1.4.3

0/0 0/0 0/0 0/0 0/0 ? |-- derivative 2.2.0

0/0 15/15 0/0 0/0 3/3 (. |-- proc-macro2 1.0.66

0/0 0/0 0/0 0/0 0/0 7 |-— quote 1.0.32

0/0 69/69 3/3 0/0 2/2 [“-- syn 1.0.109

0/0 15/15 0/0 0/0 &/8 (I | -- proc-macro2 1.0.66
0/0 0/0 0/0 0/0 0/0 7 | |-- quote 1.0.32

0/0 4/4 0/0 0/0 0/0 (I “-- unicode-ident

— 1.0.11

0/0 0/0 0/0 0/0 0/0 ? |-- derive_more 0.99.17

0/0 0/0 0/0 0/0 0/0 ? | -— convert_case 0.4.0

0/0 15/15 0/0 0/0 3/3 (I |-- proc-macro2 1.0.66

0/0 0/0 0/0 0/0 0/0 7 | |-- quote 1.0.32

0/0 69/69 3/3 0/0 2/2 [“—— syn 1.0.109

0/0 0/0 0/0 0/0 0/0 :) |-- digest 0.10.7

0/0 0/72 0/3 0/1 0/3 ? |-- itertools 0.6.5

0/0 14/14 0/0 0/0 0/0 o “—-- either 1.9.0

0/0 5/5 0/0 0/0 0/0 o “—— serde 1.0.176

0/0 /7 1/1 0/0 0/0 ! |-- lazy_static 1.4.0

0/0 5/5 0/0 0/0 0/0 ' |-- merlin 3.0.0

0/1 176/193 0/0 0/0 0/0 . |-- byteorder 1.4.3

0/1 1/2 0/0 0/0 0/0 . |-- keccak 0.1.4

0/0 2/2 0/0 0/0 0/0 [| -— rand_core 0.6.4

1/1 24/24 0/0 0/0 0/0 P “-— zeroize 1.6.0

0/0 32/32 0/0 0/0 0/0 ! |-- rand 0.8.5

1/60 10/502 0/2 0/0 5/50 r |-— libc 0.2.147

0/2 0/20 0/1 0/0 0/0 7 |-— log 0.4.19

0/0 5/5 0/0 0/0 0/0 (I | “—— serde 1.0.176

Ref: 23-08-1291-LIV 35 Quarkslab SAS

0/0 0/0 0/0 0/0 0/0 7 | | -— rand_chacha 0.3.1
2/2 636/712 0/0 0/0 17/26 ' | | |-- ppv-lite86 0.2.17
0/0 2/2 0/0 0/0 0/0 [| | -— rand_core 0.6.4
0/0 5/5 0/0 0/0 0/0 o | “—— serde 1.0.176
0/0 2/2 0/0 0/0 0/0 o |-- rand_core 0.6.4
0/0 5/t 0/0 0/0 0/0 o “—— serde 1.0.176
0/0 2/2 0/0 0/0 0/0 ! |-- rand_core 0.6.4
0/0 5/5 0/0 0/0 0/0 ! |-- serde 1.0.176
0/0 0/0 0/0 0/0 0/0 :) |-- sha3 0.10.8
0/0 0/0 0/0 0/0 0/0 DR |-- digest 0.10.7
0/1 1/2 0/0 0/0 0/0 o “—— keccak 0.1.4
0/2 151/802 0/0 0/0 0/0 ! |-- tari-curve25519-dalek 4.0.3
0/0 0/0 0/0 0/0 0/0 7 | |-- cfg-if 1.0.0
0/1 0/14 0/0 0/0 0/0 7 | | -- cpufeatures 0.2.9
0/0 0/0 0/0 0/0 0/0 7 | | -— curve25519-dalek-derive
— 0.1.0
0/0 15/15 0/0 0/0 BV P | |-- proc-macro2 1.0.66
0/0 0/0 0/0 0/0 0/0 7 | | |-- quote 1.0.32
0/0 79/79 3/3 0/0 2/2 o | ~-- syn 2.0.27
0/0 0/0 0/0 0/0 0/0 DI |-- digest 0.10.7
0/0 2/2 0/0 0/0 0/0 o |-— rand_core 0.6.4
0/0 B/tE 0/0 0/0 0/0 o |-- serde 1.0.176
0/0 9/9 0/0 0/0 0/0 [| -— subtle 2.5.0
1/1 24/24 0/0 0/0 0/0 [“-- zeroize 1.6.0
0/0 0/0 0/0 0/0 0/0 ? |-- thiserror 1.0.44
0/0 0/0 0/0 0/0 0/0 ? | °~-- thiserror-impl 1.0.44
0/0 15/15 0/0 0/0 3/3 (. |-- proc-macro2 1.0.66
0/0 0/0 0/0 0/0 0/0 7 | |-- quote 1.0.32
0/0 79/79 3/3 0/0 2/2 I “-- syn 2.0.27
1/1 24/24 0/0 0/0 0/0 ! "-- zeroize 1.6.0
8/78 1623/3132 41/47 9/10 37/93
error: Found 4 warnings
A.2 Output of cargo clippy
gb@tari-bpp:~/bulletproofs-plus > cargo clippy --no-deps -- -A clippy::all -W

— clippy::integer_arithmetic -W clippy::string_slice -W clippy::expect_used
< -W clippy::fallible_impl_from -W clippy::get_unwrap -W

— clippy::index_refutable_slice

-W clippy::indexing_slicing -W clippy::match_on_vec_items -W

— clippy::match_wild_err_arm -W clippy::missing_panics_doc -W clippy: :panic

— -W clippy::panic_in_result_fn -W clippy::unreachable -W

— clippy::unwrap_in_result -W clippy::unwrap_used

Checking tari_bulletproofs_plus v0.3.1 (~/bulletproofs-plus)

warning: lint “clippy::integer_arithmetic® has been renamed to

— “clippy::arithmetic_side_effects”

|

= note: requested on the command line with "-W clippy::integer_arithmetic’

Ref: 23-08-1291-LIV 36 Quarkslab SAS

warning: arithmetic operation that can potentially result in unexpected
— side-effects

--> src/generators/aggregated_gens_iter.rs:22:13
|
22 self .party_idx += 1;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects
= note: "-W clippy::arithmetic-side-effects™ implied by ~-W
— clippy::integer-arithmetic"

warning: arithmetic operation that can potentially result in unexpected
< side-effects

--> src/generators/aggregated_gens_iter.rs:29:13
|
29 self.gen_idx += 1;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/generators/aggregated_gens_iter.rs:30:19
|

30 Some (&self .array[self.party_idx] [cur_gen])

|
| AmmmmmmasmasssasmaasRiasaaaaaailaan
|

= help: consider using ~.get(n) or ~.get_mut(n) instead
help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing
= note: requested on the command line with “-W clippy::indexing-slicing”

warning: indexing may panic
--> src/generators/aggregated_gens_iter.rs:30:19
|
30 Some (&self .array[self.party_idx] [cur_gen])

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected

< side-effects
—--> src/generators/aggregated_gens_iter.rs:35:20
|
35 let size = self.n * (self.m - self.party_idx) - self.gen_idx;

Ref: 23-08-1291-LIV 37 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/generators/bulletproof_gens.rs:75:13
|
75 | g_vec[i] .extend (&mut
— GeneratorsChain: :<P>::new(&label) .take(gens_capacity));

help: consider using ~.get(n) or ~.get_mut(n) instead

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/generators/bulletproof_gens.rs:78:13
|
78 | h_vec[i] .extend (&mut
— GeneratorsChain: :<P>::new(&label) .take(gens_capacity));

help: consider using ~.get(n) or "~ .get_mut(n) instead

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/inner_product_round.rs:86:90

|
if !(hi_base.len() == n && ai.len() == n && bi.len() == n) ||

< (y_powers.len() != (n + 2)) {

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/inner_product_round.rs:111:36

li: Vec::with_capacity(n * aggregation_factor + 2),

111

|

|

|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/inner_product_round.rs:112:36

112 | ri: Vec::with_capacity(n * aggregation_factor + 2),

Ref: 23-08-1291-LIV 38 Quarkslab SAS

|
|
= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

< side-effects
--> src/inner_product_round.rs:146:26

146 | let mut al = &self.gi base[0] * r +

&self .hi_base[0] * s +
&self .h_base * (r * self.y_powers[1] * self.bi[0] + s

[
[
< x self.y_powers[1] * self.ail[0]);
|
|

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:146:27
|

146 let mut al = &self.gi_base[0] * r +

|
| mmassiaRaasaaan
|

= help: consider using "~ .get(n) or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/inner_product_round.rs:147:18

|
&self.hi_base[0] * s +

147 |
|
|
= help: consider using ~.get(n) or ~.get_mut(n) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:148:37

|
148 | &self.h_base * (r * self.y_powers[1] * self.bi[0] + s *

— self.y_powers[1l] * self.ail0]);

help: consider using ~.get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:148:56

Ref: 23-08-1291-LIV 39 Quarkslab SAS

|
148 | &self .h_base * (r * self.y_powers[1] * self.bi[0] + s *
— self.y_powers[1] * self.ai[0]);
|
|

help: consider using ~.get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:148:73

|
148 | &self .h_base * (r * self.y_powers[1] * self.bi[0] + s *

— self.y_powers[1] * self.ai[0]);

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/inner_product_round.rs:148:92

|
148 | &self.h_base * (r * self.y_powers[1] * self.bi[0] + s *

— self.y_powers[1] * self.ail0]);

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:149:25

|
let mut b = &self.h_base * (r * self.y_powers[1l] * s);

149

|
|
|
= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:149:45

|
let mut b = &self.h _base * (r * self.y_powers[1l] * s);

149 |
|
|
= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

Ref: 23-08-1291-LIV 40 Quarkslab SAS

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:151:17
|

151 al += &self.g basel[k] * d[k];

|
| mmmmmsmeasaiRassssassansaas
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:151:24
I

151 al += &self.g basel[k] * d[k];

|
I
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/inner_product_round.rs:151:41
I

151 al += &self.g baselk] * d[k];

|
| e
|

= help: consider using ~.get(n) or "~ .get_mut(n) instead

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:152:17
I

152 b += &self.g_base[k] * etalk]

|
| AmmmmmseasRAsascascasaananas
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:152:23
[
152 | b += &self.g_base[k] * etalk]
T s
I

help: consider using ~.get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic

Ref: 23-08-1291-LIV 41 Quarkslab SAS

--> src/inner_product_round.rs:152:40

I
152 | b += &self.g _base[k] * eta[k]
LT A
|

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:160:28
I

160 self.rl = Some(r + self.ail[0] * e);

I
I
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:160:32
|

160 self.rl = Some(r + self.ail0] * e);

|
R
|

= help: consider using "~ .get(n) or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:161:28
[

161 self.s1 = Some(s + self.bi[0] * e);

|
| Ammmmsmmnnssanaaae
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:161:32
I
161 self.s1 = Some(s + self.bi[0] * e);

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:162:28

Ref: 23-08-1291-LIV 42 Quarkslab SAS

162 let e_square = e * e;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/inner_product_round.rs:164:30
|
164 | self.dl.push(etalk] + d[k] * e + self.alphalk] *
— e_square)

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:164:30
|
164 | self.dl.push(etalk] + d[k] * e + self.alphalk] *
< e_square)

|

= help: consider using ~.get(n) or "~ .get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:164:39
[
164 | self.dl.push(eta[k] + d[k] * e + self.alphalk] *
< e_square)

|

= help: consider using ~.get(n) ™ or "~ .get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:164:50
[
164 | self.dl.push(etalk] + d[k] * e + self.alphalk] *
< e_square)

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

Ref: 23-08-1291-LIV 43 Quarkslab SAS

warning: slicing may panic
--> src/inner_product_round.rs:171:19
I

171 let al = &self.ail..n];

I
T
|

= help: consider using ~.get(..n) or
help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

.get_mut(..n)" instead

warning: slicing may panic
--> src/inner_product_round.rs:172:19
I

172 let a2 = &self.ailn..];

help: consider using "~ .get(n..)” or .get_mut(n..) instead
help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: slicing may panic
--> src/inner_product_round.rs:173:19
|
173 | let bl = &self.bil[..n];
| Ammmmmeaaeas
|
= help: consider using "~ .get(..n) or °
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

.get_mut(..n) instead

warning: slicing may panic
--> src/inner_product_round.rs:174:19
[

174 let b2 = &self.biln..];

help: consider using "~ .get(n..)” or .get_mut(n..) instead
help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: slicing may panic
--> src/inner_product_round.rs:175:27
|

175 let gi_base_lo = &self.gi_basel..n];

|
|
|
= help: consider using "~ .get(..n) or °
help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

.get_mut(..n) instead

warning: slicing may panic
--> src/inner_product_round.rs:176:27

Ref: 23-08-1291-LIV 44 Quarkslab SAS

176 let gi_base_hi = &self.gi_base[n..];

help: consider using "~ .get(n..)” or .get_mut(n..) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: slicing may panic
--> src/inner_product_round.rs:177:27
|

177 let hi_base_lo = &self.hi basel..n];

|
e
|

= help: consider using "~ .get(..n) or ~.get_mut(..n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: slicing may panic
--> src/inner_product_round.rs:178:27
|

178 let hi_base_hi = &self.hi_basel[n..];

|
| T T smmssenRaannaanan
|

= help: consider using ~.get(n..)” or .get_mut(n..) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:179:30
I

179 let y_n_inverse = if self.y_powers[n] == Scalar::ZERO {

|
e
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:184:13
I

184 self.y_powers[n].invert()

|
| ~meenRReassenaae
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:186:43

Ref: 23-08-1291-LIV 45 Quarkslab SAS

186 | let al_offset = al.iter().map(ls| s *
— y_n_inverse).collect::<Vec<Scalar>>();

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/inner_product_round.rs:187:43
|
187 | let a2_offset = a2.iter().map(ls| s *
— self.y_powers[n]).collect::<Vec<Scalar>>();

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:187:47
|
187 | let a2_offset = a2.iter() .map(ls| s *
— self.y_powers[n]).collect::<Vec<Scalar>>();

|

= help: consider using "~ .get(n) or "~ .get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:205:9

self.round += 1;

205

|
I
|
= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

< side-effects
--> src/inner_product_round.rs:210:13

|
c_1l += al[i] * self.y_powers[i + 1] * b2[i];

|
| ARAmmmmmmAmmAAmAA~ AR R AAAAAAAAAAA~AAasanan
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:210:20

Ref: 23-08-1291-LIV 46 Quarkslab SAS

c_1l += al[i] * self.y_powers[i + 1] * b2[i];

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:210:28
I

210 c_1l += al[i] * self.y_powers[i + 1] * b2[i];

|
e e
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:210:51
I

210 c_1l += al[i] * self.y_powers[i + 1] * b2[i];

|
C T T s
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:211:13
I

211 c_r += a2[i] * self.y_powers[n + i + 1] * bi[i];

|
| A RAAm R AR AR A AN A A~ AR AN A NS AAAAAAAASAAA~anan
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:211:20
I

211 c_r += a2[i] * self.y_powers[n + i + 1] * bi[i];

|
LT A
|

= help: consider using ~.get(n) or "~ .get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:211:28
|
211 | c_r += a2[i] * self.y_powers[n + i + 1] * bi1[i];
e

Ref: 23-08-1291-LIV 47 Quarkslab SAS

= help: consider using ~.get(n)” or °~.get_mut(n) instead
help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/inner_product_round.rs:211:55
I

211 c_r += a2[i] * self.y_powers[n + i + 1] * bi[i];

|
C T T s
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/inner_product_round.rs:238:14
I
238 | &self.1li[self.li.len() - 1].compress(),
| Ammmmmmmsmsssssasasasaaaas
|

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:238:22
I

238 &self.1li[self.li.len() - 1].compress(),

I
T
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:239:14
|

239 &self .ri[self.ri.len() - 1].compress(),

|
| Ammmmmmmammsssmasaaasanaas
|

= help: consider using ~.get(n) or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:239:22
[
239 &self.ri[self.ri.len() - 1].compress(),

Ref: 23-08-1291-LIV 48 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/inner_product_round.rs:245:55

245

—

P::mul_point_vec_with_scalar(gi_base_hi, &(e *
_n_inverse))?.as_slice(),

N ——< — —

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
-=> src/inner_product_round.rs:260:24

260 let e_square = e * e;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/inner_product_round.rs:261:32

261 let e_inverse_square = e_inverse * e_inverse;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/inner_product_round.rs:263:13

|
263 | self.alphal[k] += d_1[k] * e_square + d_r[k] =*
< e_inverse_square;

|

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/inner_product_round.rs:263:30

|
263 | self.alphalk] += d_1[k] * e_square + d_r[k] *
< e_inverse_square;

|

Ref: 23-08-1291-LIV 49 Quarkslab SAS

= help: consider using ~.get(n)” or °~.get_mut(n) instead
help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/inner_product_round.rs:263:50
|
263 | self.alphalk] += d_1[k] * e_square + d_r[k] *
— e_inverse_square;
T
|
= help: consider using ~.get(n)” or ~.get_mut(n) instead
= help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/inner_product_round.rs:263:13
|
263 | self.alphal[k] += d_1[k] * e_square + d_r[k] *
< e_inverse_square;
s
|
= help: consider using ~.get(n)” or ~.get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: slicing may panic
-—> src/protocols/curve_point_protocol.rs:52:9
[
52 (buffer[0..size]).copy_from_slice(&output.as_slice() [0..size]);

help: consider using ~.get(n..m) or ~.get_mut(n..m) instead
help: for further information visit
« https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: slicing may panic
--> src/protocols/curve_point_protocol.rs:52:44
|
52 (buffer[0..size]) .copy_from_slice(&output.as_slice() [0..size]);

help: consider using ~.get(n..m)” or °~.get_mut(n..m) instead
= help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/protocols/curve_point_protocol.rs:66:22

66 | out[i] = &point_vec[i] * *scalar;

Ref: 23-08-1291-LIV 50 Quarkslab SAS

I e
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/protocols/curve_point_protocol.rs:66:23
|

66 out[i] = &point_vec[i] * xscalar;

|
R D
|

= help: consider using "~ .get(n) or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/protocols/curve_point_protocol.rs:66:13
66 out[i] = &point_vec[i] * *scalar;

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/protocols/curve_point_protocol.rs:79:22
|
79 | out[i] = &al[i] + &b[il;
| AAAAAAAAAAAAA
|

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/protocols/curve_point_protocol.rs:79:23
|

79 out[i] = &al[i]l + &bl[il;

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/protocols/curve_point_protocol.rs:79:31
|

79 out[i] = &a[i] + &b[il;

help: consider using ~.get(n)” or ~.get_mut(n) instead

Ref: 23-08-1291-LIV 51 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/protocols/curve_point_protocol.rs:79:13
|

79 out[i] = &al[il + &bl[il;

|
I
|

= help: consider using "~ .get(n) or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects

--> src/protocols/scalar_protocol.rs:54:22
|

54 out[i] = scalar_vec[i] * scalar;

|
| AmmmanRassssaanannaas
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/protocols/scalar_protocol.rs:54:22
|
54 out[i] = scalar_vec[i] * scalar;

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/protocols/scalar_protocol.rs:54:13
|

54 out[i] = scalar_vec[i] * scalar;

|
T
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
-—> src/protocols/scalar_protocol.rs:65:22
[

65 out[i] = a[il + bl[il;

|
R
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

Ref: 23-08-1291-LIV 52 Quarkslab SAS

warning: indexing may panic
-—> src/protocols/scalar_protocol.rs:65:22
|

65 out[i] = al[il + bl[il;

|
| JOUS
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

« https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
-—> src/protocols/scalar_protocol.rs:65:29
[

65 out[i] = a[i]l + bl[il;

|
| PO
|

= help: consider using ~.get(n) or "~ .get_mut(n) instead

help: for further information visit

« https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/protocols/scalar_protocol.rs:65:13
|
65 out[i] = al[i] + bl[il;

help: consider using ~.get(n) ™ or "~ .get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:234:43
I
234 | let mut a_li = Vec::with_capacity(bit_length *
— aggregation_factor);

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof .rs:235:43
I
235 | let mut a_ri = Vec::with_capacity(bit_length *
— aggregation_factor);

Ref: 23-08-1291-LIV 53 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof .rs:237:59

|
237 | let bit_vector = if let Some(minimum_value) =
< statement.minimum_value_promises[j] {

= help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:243:43
I
243 | bit_vector_of_scalars(value - minimum_value,
< bit_length)?
e

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof.rs:250:27
I

250 a_ri.push(bit_field - Scalar::0NE);

|
R
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:273:24
I

273 let z_square = z * z;

|
T
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:276:47

I
276 | let mut y_powers = Vec::with_capacity(aggregation_factor *

< bit_length + 2);

Ref: 23-08-1291-LIV 54 Quarkslab SAS

I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:278:21
I

278 for _ in 1..(aggregation_factor * bit_length + 2) {

I
e TS
I

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof.rs:279:27
I

279 y_powers.push(y_powers [y_powers.len() - 1] * y);

I
N
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:279:27
I

279 y_powers.push(y_powers[y_powers.len() - 1] * y);

I
e I e
I

= help: consider using ~.get(n) or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:283:40
I

283 let mut d = Vec::with_capacity(bit_length * aggregation_factor);

I
T
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:287:20
[
287 | d.push(two * d[i - 11);
R

Ref: 23-08-1291-LIV 55 Quarkslab SAS

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:287:26
[
287 | d.push(two * d[i - 11);
T
I

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:291:24
[
291 | d.push(d[(j - 1) * bit_length + i] * z_square);
S
|

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:291:24
|

291 d.push(d[(j - 1) * bit_length + i] * z_square);

|
| seRRsmssssssanRanaananaan
|

= help: consider using "~ .get(n) or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects

--> src/range_proof.rs:297:13

|

297 |
T
I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:300:13
|
300 | xitem += d[i] * y_powers[bit_length * aggregation_factor -
— il + z;

Ref: 23-08-1291-LIV 56 Quarkslab SAS

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:300:22
|
300 | *item += d[i] * y_powers[bit_length * aggregation_factor -
— il + z;

help: consider using ~.get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:300:29

|
300 | *item += d[i] * y_powers[bit_length * aggregation_factor -

- il + z;
|
= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof.rs:305:13
I

305 Z_even_powers *= z_square;

|
| ~RAmseRassasmassanRanaaas
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—--> src/range_proof.rs:307:17
I

307 | xalphal_val += z_even_powers * witness.openings[j].r[k]
— * y_powers[bit_length * aggregation_factor + 1];

I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof .rs:307:48
I

Ref: 23-08-1291-LIV 57 Quarkslab SAS

xalphal_val += z_even_powers * witness.openings[j].r[k]
y_powers[bit_length * aggregation_factor + 1];

w
(@]
Y|

l
N —— % —

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof .rs:307:48
|
307 | xalphal_val += z_even_powers * witness.openings[j].r[k]
— x y_powers[bit_length * aggregation_factor + 1];
I
I

help: consider using ~.get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:307:75

307 | *xalphal_val += z_even_powers * witness.openings[j].r[k]
— * y_powers[bit_length * aggregation_factor + 1];

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:359:37
|
359 | let (g_base_vec, h_base) = (statements[0].generators.g_bases(),
— statements[0] .generators.h_base());

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:359:73

|
359 | let (g_base_vec, h_base) = (statements[0].generators.g_bases(),

— statements[0] .generators.h_base());

help: consider using ~.get(n)” or ~.get_mut(n) instead

Ref: 23-08-1291-LIV 58 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:360:26

|
let bit_length = statements[0].generators.bit_length();

360 |
|
|
= help: consider using °~.get(n) or ~.get_mut(n) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:361:26

361 | let mut max_mn = statements[0].commitments.len() *
— statements[0] .generators.bit_length();

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:361:26
|
361 | let mut max_mn = statements[0].commitments.len() *
— statements[0] .generators.bit_length();

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:361:60

361 | let mut max_mn = statements[0].commitments.len() *
— statements[0] .generators.bit_length();
|

|

= help: consider using ~.get(n) or "~ .get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:363:32
[
363 | let extension_degree =
— statements[0] .generators.extension_degree();

Ref: 23-08-1291-LIV 59 Quarkslab SAS

help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:365:63
I

365 | if extension_degree !=
— ExtensionDegree::try_from_size(range_proofs[0].dl.len())? {

help: consider using ~.get(n) or ~.get_mut(n) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:385:68

385 | extension_degree !=
— ExtensionDegree::try_from_size(range_proofs[i].dl.len())?

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected

< side-effects
—--> src/range_proof.rs:389:16

389 | if statement.commitments.len() *

< statement.generators.bit_length() > max_mn {

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:390:26

390 | max_mn = statement.commitments.len() *
< statement.generators.bit_length();

Ref: 23-08-1291-LIV 60 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:395:13
I

395 statements[max_index] .generators.gi_base_ref (),

I
| ~mmmmmmmmssannanaaas
I

= help: consider using °~.get(n) or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:396:13
|

396 statements[max_index] .generators.hi_base_ref (),

I
T
I

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:400:29
|

400 if value >> (bit_length - 1) > 1 {

I
I
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:411:21
I
411 if &statement_gi_base ref[j] != gi_base_ref_item {

help: consider using ~.get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
—--> src/range_proof.rs:419:21
I

419 if &statement_hi_base ref[j] != hi_base_ref_item {

I
T
I

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

Ref: 23-08-1291-LIV 61 Quarkslab SAS

warning: indexing may panic
--> src/range_proof .rs:478:37
|
478 | let (g_base_vec, h_base) = (statements[0].generators.g bases(),
— statements[0] .generators.h_base());

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:478:73

|
478 | let (g_base_vec, h_base) = (statements[0].generators.g bases(),

— statements[0] .generators.h_base());

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:479:26
|

479 let bit_length = statements[0].generators.bit_length();

|
R
|

= help: consider using "~ .get(n) ™ or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:480:32
|
480 | let extension_degree =
— statements[0] .generators.extension_degree() as usize;

help: consider using ~.get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:481:34
|
481 | let g_bases_compressed =
— statements[0] .generators.g_bases_compressed() ;
I emesesesanas
I

Ref: 23-08-1291-LIV 62 Quarkslab SAS

= help: consider using ~.get(n) or "~ .get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:482:33
|
482 | let h_base_compressed =
< statements[0] .generators.h_base_compressed() ;

help: consider using ~.get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:483:23

483 let precomp = statements[max_index] .generators.precomp() ;

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects

--> src/range_proof.rs:489:13

I

489 |
| memReasaas
|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects

--> src/range_proof.rs:496:31
496 two_n_minus_one = two_n_minus_one * two_n_minus_one;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof .rs:498:9
[
498 two_n_minus_one -= Scalar::0NE;

Ref: 23-08-1291-LIV 63 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects

--> src/range_proof.rs:510:35
510 let mut msm_dynamic_len = extension_degree + 1;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:512:13

|
512 | msm_dynamic_len += item.generators.aggregation_factor() + 3
— + range_proofs[index].li.len() * 2;
I

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:512:75

[
512 | msm_dynamic_len += item.generators.aggregation_factor() + 3
— + range_proofs[index].li.len() * 2;
I

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—--> src/range_proof.rs:546:33
I
546 | if 1 << li.len() !'= commitments.len() * bit_length {
e
[

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:552:30
I
552 | let gen_length = aggregation_factor * bit_length;

Ref: 23-08-1291-LIV 64 Quarkslab SAS

|
|
= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
—--> src/range_proof.rs:577:86

577 | transcripts::transcript_points_l_r_challenge_e(&mut
< transcript, &proof.li()?[j], &proof.ri()?7[j]1)7;

help: consider using ~.get(n)” or ~.get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:577:103
I

577 | transcripts: :transcript_points_1_r_challenge_e (&mut
— transcript, &proof.li()?[j], &proof.ri()?7[j]1)7;

|

= help: consider using "~ .get(n) or "~ .get_mut(n) instead

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:585:28
|

585 let z_square = z * z;

|
C T A
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:586:28
|

| let e_square = e * e;

C T A

I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:592:24

Ref: 23-08-1291-LIV 65

Quarkslab SAS

592 y_nm = y_nm * y_nm;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:593:36
|

593 challenges_sq.push(challenges[i] * challenges[i]);

I
e
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:593:36
I

593 challenges_sq.push(challenges[i] * challenges[i]);

I
I
I

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:593:52
I

593 challenges_sq.push(challenges[i] * challenges[i]);

I
P PSS SRS
I

= help: consider using ~.get(n)” or °~.get_mut(n) instead

help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof .rs:594:40
I
594 | challenges_sq_inv.push(challenges_inv[i] *
< challenges_inv[i]);

I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
—-=> src/range_proof .rs:594:40
I

Ref: 23-08-1291-LIV 66 Quarkslab SAS

594 | challenges_sq_inv.push(challenges_inv[i] =*
— challenges_inv[i]);

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:594:60

|
594 | challenges_sq_inv.push(challenges_inv[i] *

— challenges_inv[il);

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:596:26

596 let y.nm_1 = y_nm * y;

|
LT T Rt
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:599:25

for _ in 0..bit_length * aggregation_factor {

|
599 |
R PUSSSULINPRPR S0 SRR SO
|

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:600:17

600 y_sum += y_sum_temp;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects

Ref: 23-08-1291-LIV 67 Quarkslab SAS

--> src/range_proof.rs:601:17

601 y_sum_temp *= y;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:605:44
[
605 | let mut d = Vec::with_capacity(bit_length *
— aggregation_factor);

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:608:24
I

608 d.push(two * d[i - 11);

|
R
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:608:30
[

608 d.push(two * d[i - 11);

|
P PSS
|

= help: consider using °~.get(n) or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:612:28
[
612 | d.push(d[(j - 1) * bit_length + i] * z_square);
| e
I

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:612:28

Ref: 23-08-1291-LIV 68 Quarkslab SAS

d.push(d[(j - 1) * bit_length + i] * z_square);

612

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:619:37

let mut d_sum_temp_2m = 2 * aggregation_factor;

I
619 |
I
I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:621:25
|

621 d_sum = d_sum + d_sum * d_sum_temp_z;

I
| ARssmssmaRasssaniaaniaaania
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:622:32
|

| d_sum_temp_z = d_sum_temp_z * d_sum_temp_z;

T

I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:625:13
I

625 d_sum *= two_n_minus_one;

I
| ~RmmmmammsasRaRasanalaas
I

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof.rs:634:49
I

Ref: 23-08-1291-LIV 69 Quarkslab SAS

634 | R let mut this_mask = (*d1_val -

635 | ... nonce (&seed_nonce, "eta", None, Some(k))? -
636 | ... e * nonce(&seed_nonce, "d", None, Some(k))?)
637 | ... e_square.invert () ;

I
I
o %
I
I
I

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—--> src/range_proof.rs:638:29

638 | ... this_mask -= nonce(&seed_nonce, "alpha", None,
— Some(k))?;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof .rs:640:33

640 | ... this_mask -= challenges_sql[j] * nonce(&seed_nonce,
— "dL", Some(j), Some(k))?;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof .rs:640:46
I
640 | ... this_mask -= challenges_sql[j] * nonce(&seed_nonce,
— "dL", Some(j), Some(k))?;
T
I
= help: consider using °~.get(n) or "~ .get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:641:33

I
641 | ... this_mask -= challenges_sq_inv[j] *
< nonce(&seed_nonce, "dR", Some(j), Some(k))?;

Ref: 23-08-1291-LIV 70 Quarkslab SAS

I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
—--> src/range_proof.rs:641:46

I
641 | this_mask -

nonce (&seed_nonce, "dR", Some(j), Some(k))?;
N o e

I
= help: consider using ~.get(n)” or ~.get_mut(n) instead

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

= challenges_sq_inv[j] *

—

warning: arithmetic operation that can potentially result in unexpected

side-effects

o
--> src/range_proof.rs:643:29

I
this_mask *= (z_square * y_nm_1).invert();

I
I
I
= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

side-effects

o
—-=> src/range_proof .rs:665:29
I
665 | let log_ i = (32 - 1 - (i as u32).leading_zeros()) as
— usize;

I
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

side-effects

o
--> src/range_proof.rs:667:24

I
s.push(s[i - j] * challenges_sqlrounds - log i - 1]);

I

I

I

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:667:24

I
667 | s.push(s[i - j] * challenges_sqlrounds - log_i - 1]);

Ref: 23-08-1291-LIV 71 Quarkslab SAS

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:667:35
I

667 s.push(s[i - j] * challenges_sqlrounds - log i - 1]);

|
T IS
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof.rs:670:25
I

670 let g = rl * e * y_inv_i * s[i];

|
| AmmemsseaRiaasRanaanaas
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:670:44
I

670 let g =rl *x e x y_inv_i * s[i];

|
| JOU
|

= help: consider using °~.get(n) ™ or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:671:25
I

671 let h = s1 * e * s[gen_length - i - 1];

|
e T
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:671:34
[
671 let h = s1 * e * s[gen_length - i - 1];

Ref: 23-08-1291-LIV 72 Quarkslab SAS

= help: consider using ~.get(n) or "~ .get_mut(n) instead
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:672:17
I

672 gi_base_scalars[i] += weight * (g + e_square * z);

|
T
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:672:17
|
672 gi_base_scalars[i] += weight * (g + e_square * z);

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:673:17

|
673 | hi_base_scalars[i] += weight * (h - e_square * (d[i] *
o y_om_ i + z));

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof.rs:673:65

673

—

hi_base_scalars[i] += weight * (h - e_square * (d[i] *
nm_i + z));

N ——< — —

help: consider using "~ .get(n) or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: indexing may panic
--> src/range_proof.rs:673:17

|
673 | hi_base_scalars[i] += weight * (h - e_square * (d[i] *
— y.nm i + z));

Ref: 23-08-1291-LIV 73 Quarkslab SAS

help: consider using ~.get(n)” or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:674:17

674 y_inv_i *= y_inverse;

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—-=> src/range_proof.rs:675:17

675 y_nm_i *= y_inverse;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:681:17

681 Z_even_powers *= z_square;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:682:32

682 | let weighted = weight * (-e_square * z_even_powers *
< y_nm_1);

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
—--> src/range_proof.rs:685:21
I

Ref: 23-08-1291-LIV 74 Quarkslab SAS

685 | h_base_scalar -= weighted *
— Scalar::from(minimum_value) ;

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:690:13

|
690 | h_base_scalar += weight * (rl * y * sl + e_square * (y_nm_1
< * z * d_sum + (z_square - z) * y_sum));
|

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:692:17
I

692 g_base_scalars[k] += weight * di[k];

|
e
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: indexing may panic
--> src/range_proof .rs:692:47
[

692 g_base_scalars[k] += weight * d1[k];

|
P S A
|

= help: consider using °~.get(n) or ~.get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:692:17
|
692 g_base_scalars[k] += weight * d1[k];

help: consider using "~ .get(n) ™ or ~.get_mut(n) instead
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects

Ref: 23-08-1291-LIV 75 Quarkslab SAS

--> src/range_proof.rs:695:34

695 dynamic_scalars.push(weight * (-e));

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:697:34

697 dynamic_scalars.push(-weight) ;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:699:34
|

699 dynamic_scalars.push(weight * (-e_square));

|
I
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:702:70

702 | dynamic_scalars.extend(challenges_sq.into_iter () .map(lc|
— weight * -e_square * c));

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:704:74

704 | dynamic_scalars.extend(challenges_sq_inv.into_iter () .map(lc]|
— weight * -e_square * c));

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

Ref: 23-08-1291-LIV 76 Quarkslab SAS

warning: indexing may panic
--> src/range_proof.rs:713:34
I

713 dynamic_scalars.push(g_base_scalars[k]);

help: consider using ~.get(n) or ~.get_mut(n) instead
help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: indexing may panic
--> src/range_proof.rs:714:33
I

714 dynamic_points.push(g_base_vec[k].clone());

|
I
|

= help: consider using ~.get(n) or "~ .get_mut(n) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:815:42
|
815 | let mut buf = Vec::with_capacity(l + (self.li.len() +
< self.ri.len() + 5 + self.dl.len()) * 32);

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:836:32
I

836 if slice.is_empty() || (slice.len() - 1) 7% 32 != 0 {

|
I T T amsssaseannnanaan
|

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof.rs:841:71
[
841 | let extension_degree =
— ExtensionDegree::try_from(read_1_byte(&slice[0..])[0] as usize)?;

help: consider using ~.get(n..) or .get_mut(n..) instead

Ref: 23-08-1291-LIV 77 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected

< side-effects
--> src/range_proof.rs:842:28

let num_elements = (slice.len() - 1) / 32;

|
842 |
|
|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof.rs:843:27

|
if num_elements < 2 + 5 + extension_degree as usize {

|
I
|
= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:848:43

848 | let num_inner_prod_vec_elements = num_elements - 5 -
— extension_degree as usize;

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof.rs:859:68
|

859 |
— 1li.push(P::Compressed: :from_fixed_bytes(read_32_bytes(&slice[l + i *

o 32..1));

help: consider using ~.get(n..)” or .get_mut(n..) instead
= help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:859:74

Ref: 23-08-1291-LIV 78

Quarkslab SAS

859 |
— 1li.push(P::Compressed: :from_fixed_bytes(read_32_bytes(&slice[l + i *

o 32..1)0);

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:861:21

for i inn..2 * n {

861

I
|
|
= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof.rs:862:68

862 |
— ri.push(P::Compressed: :from_fixed_bytes(read_32_bytes(&slice[l + i *
< 32..1)));

|
= help: consider using ~.get(n..)” or .get_mut(n..) instead

= help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:862:74

862 |
— ri.push(P::Compressed: :from_fixed_bytes(read_32_bytes(&slicel[l + i *
= 32..1)));

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:865:19

|
let pos =1 + 2 * n * 32;

865 |
I
I

Ref: 23-08-1291-LIV 79 Quarkslab SAS

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof .rs:866:64

866 | let a =
— P::Compressed::from_fixed_bytes(read_32_bytes(&slice[pos..]1));

= help: consider using ~.get(n..)” or .get_mut(n..) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: slicing may panic
--> src/range_proof.rs:867:65
[

867 | let al =
«— P::Compressed::from_fixed_bytes(read_32_bytes(&slice[pos + 32..1));

or .get_mut(n..) instead

help: consider using ~.get(n..)"
help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:867:71
I

867 | let al =
— P::Compressed::from_fixed_bytes(read_32_bytes(&slice[pos + 32..]1));

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof.rs:868:64

868 | let b = P::Compressed::from_fixed_bytes(read_32_bytes(&slice[pos

|
= help: consider using "~ .get(n..)” or .get_mut(n..) instead

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

Ref: 23-08-1291-LIV 80 Quarkslab SAS

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:868:70

I

868 |
o+ 64..1));

let b = P::Compressed::from_fixed_bytes(read_32_bytes(&slice[pos

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof.rs:869:75

I
869 | let rl =

— Option::from(Scalar::from_canonical_bytes(read_32_bytes(&slice[pos +
- 96..1)))

|

L, ~rmmmmmamamasans

|
= help: consider using "~ .get(n..)” or .get_mut(n..) instead

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected

— side-effects
--> src/range_proof.rs:869:81

|
869 | let rl =

— Option::from(Scalar::from_canonical_bytes(read_32_bytes(&slice[pos +
o 96..1)))

|

L, mmmmenn

help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
—-=> src/range_proof.rs:871:75

871 | let sl =
— Option::from(Scalar::from_canonical_bytes(read_32_bytes(&slice[pos +
- 128..1)))

help: consider using "~ .get(n..)” or .get_mut(n..) instead

= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

Ref: 23-08-1291-LIV 81 Quarkslab SAS

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:871:81
I

871 | let s1 =
— Option::from(Scalar::from_canonical_bytes(read_32_bytes(&slice[pos +
- 128..1)))

|

L, ~nmnmmann

|
= help: for further information visit
— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof .rs:877:22
|

877 &slice[pos + 160 + i * 32..],

|
| Ammmmsmsssmasssassasaaanaas
|

= help: consider using ~.get(n..)” or .get_mut(n..) instead

help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: arithmetic operation that can potentially result in unexpected
< side-effects
--> src/range_proof .rs:877:28
|

877 &slice[pos + 160 + i * 32..],

|
| Amsmmssmanssnnaaas
I

= help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/range_proof.rs:900:32
|

900 if slice.is_empty() || (slice.len() - 1) % 32 != 0 {

|
I T T amssmsseannnanaan
|

= help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/range_proof.rs:905:48
I

905 ExtensionDegree: :try_from(read_1_byte(&slice[0..]) [0] as usize)

help: consider using ~.get(n..)” or .get_mut(n..) instead
help: for further information visit

< https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

Ref: 23-08-1291-LIV 82 Quarkslab SAS

warning: indexing may panic
--> src/range_witness.rs:27:32
|

27 let extension_degree = openings[0].r_len()?;

|
T
|

= help: consider using ~.get(n)” or ~.get_mut(n) instead

help: for further information visit

« https://rust-lang.github.io/rust-clippy/master/index.html#indexing_slicing

warning: arithmetic operation that can potentially result in unexpected
— side-effects
--> src/utils/generic.rs:74:17
|
74 if value >> (bit_length - 1) > 1 {

help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#arithmetic_side_effects

warning: slicing may panic
--> src/utils/generic.rs:93:32
|
93 buf32[..].copy_from_slice(&datal..32]);

help: consider using "~ .get(..n) or ~.get_mut(..n) instead
= help: for further information visit
< https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: slicing may panic
--> src/utils/generic.rs:100:31
|
100 | buf8[..].copy_from_slice(&datal..1]);
T
|

help: consider using "~ .get(..n) or ~.get_mut(..n) instead
help: for further information visit

— https://rust-lang.github.io/rust-clippy/master/index.html#indexing slicing

warning: “tari_bulletproofs_plus” (1ib) generated 228 warnings
Finished dev [unoptimized + debuginfo] target(s) in 0.55s

Ref: 23-08-1291-LIV 83 Quarkslab SAS

	Project Information
	Executive summary
	Purpose
	Report structure
	Disclaimer
	Findings summary

	Context and scope
	Tari
	Bulletproofs Plus

	Scope and methodology

	Discovery
	Bulletproofs Plus State of the Art
	Range Proof and Bulletproof
	Bulletproofs Plus
	Tari's BulletproofsPlus

	Code Structure
	src/
	benchmark/
	tests/

	Dependencies
	Merlin's Transcript
	tari-curve25519-dalek

	Code quality
	cargo audit
	cargo geiger
	cargo clippy

	Evaluation Overview
	Hypothesis
	Threats and Security checks
	Methodology
	Topics covered
	Range Proof and Inner Product Round
	Transcripts
	Generators
	Curve25519 Operations

	Protocol Specification

	Protocol Specification Analysis
	Notation
	Commitments Extensions
	Minimum Value Assertion
	Batch Verification
	Mask Recovery
	Sum Optimization

	Code Review
	Basis notations
	benchmark/
	transcript.rs
	transcript_protocol.rs
	bulletproof_gens.rs
	pedersen_gen.rs
	range_proof.rs

	Resiliency tests
	Fuzzing for Arithmetic Overflow
	Playing with Nonce Generation
	Fuzzing for difference in curve25519-dalek

	Conclusion
	Bibliography
	Appendix
	Output of cargo geiger
	Output of cargo clippy

