.. _Task_API: Migrating from low-level task API ================================= The low-level task API of Intel(R) Threading Building Blocks (TBB) was considered complex and hence error-prone, which was the primary reason it had been removed from oneAPI Threading Building Blocks (oneTBB). This guide helps with the migration from TBB to oneTBB for the use cases where low-level task API is used. Spawning of individual tasks ---------------------------- For most use cases, the spawning of individual tasks can be replaced with the use of either ``oneapi::tbb::task_group`` or ``oneapi::tbb::parallel_invoke``. For example, ``RootTask``, ``ChildTask1``, and ``ChildTask2`` are the user-side functors that inherit ``tbb::task`` and implement its interface. Then spawning of ``ChildTask1`` and ``ChildTask2`` tasks that can execute in parallel with each other and waiting on the ``RootTask`` is implemented as: .. code:: cpp #include int main() { // Assuming RootTask, ChildTask1, and ChildTask2 are defined. RootTask& root = *new(tbb::task::allocate_root()) RootTask{}; ChildTask1& child1 = *new(root.allocate_child()) ChildTask1{/*params*/}; ChildTask2& child2 = *new(root.allocate_child()) ChildTask2{/*params*/}; root.set_ref_count(3); tbb::task::spawn(child1); tbb::task::spawn(child2); root.wait_for_all(); } Using ``oneapi::tbb::task_group`` ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The code above can be rewritten using ``oneapi::tbb::task_group``: .. code:: cpp #include int main() { // Assuming ChildTask1, and ChildTask2 are defined. oneapi::tbb::task_group tg; tg.run(ChildTask1{/*params*/}); tg.run(ChildTask2{/*params*/}); tg.wait(); } The code looks more concise now. It also enables lambda functions and does not require you to implement ``tbb::task`` interface that overrides the ``tbb::task* tbb::task::execute()`` virtual method. With this new approach, you work with functors in a C++-standard way by implementing ``void operator() const``: .. code:: cpp struct Functor { // Member to be called when object of this type are passed into // oneapi::tbb::task_group::run() method void operator()() const {} }; Using ``oneapi::tbb::parallel_invoke`` ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ It is also possible to use ``oneapi::tbb::parallel_invoke`` to rewrite the original code and make it even more concise: .. code:: cpp #include int main() { // Assuming ChildTask1, and ChildTask2 are defined. oneapi::tbb::parallel_invoke( ChildTask1{/*params*/}, ChildTask2{/*params*/} ); } Adding more work during task execution -------------------------------------- ``oneapi::tbb::parallel_invoke`` follows a blocking style of programming, which means that it completes only when all functors passed to the parallel pattern complete their execution. In TBB, cases when the amount of work is not known in advance and the work needs to be added during the execution of a parallel algorithm were mostly covered by ``tbb::parallel_do`` high-level parallel pattern. The ``tbb::parallel_do`` algorithm logic may be implemented using the task API as: .. code:: cpp #include #include #include // Assuming RootTask and OtherWork are defined and implement tbb::task interface. struct Task : public tbb::task { Task(tbb::task& root, int i) : m_root(root), m_i(i) {} tbb::task* execute() override { // ... do some work for item m_i ... if (add_more_parallel_work) { tbb::task& child = *new(m_root.allocate_child()) OtherWork; tbb::task::spawn(child); } return nullptr; } tbb::task& m_root; int m_i; }; int main() { std::vector items = { 0, 1, 2, 3, 4, 5, 6, 7 }; RootTask& root = *new(tbb::task::allocate_root()) RootTask{/*params*/}; root.set_ref_count(items.size() + 1); for (std::size_t i = 0; i < items.size(); ++i) { Task& task = *new(root.allocate_child()) Task(root, items[i]); tbb::task::spawn(task); } root.wait_for_all(); return 0; } In oneTBB ``tbb::parallel_do`` interface was removed. Instead, the functionality of adding new work was included into the ``oneapi::tbb::parallel_for_each`` interface. The previous use case can be rewritten in oneTBB as follows: .. code:: cpp #include #include int main() { std::vector items = { 0, 1, 2, 3, 4, 5, 6, 7 }; oneapi::tbb::parallel_for_each( items.begin(), items.end(), [](int& i, tbb::feeder& feeder) { // ... do some work for item i ... if (add_more_parallel_work) feeder.add(i); } ); } Since both TBB and oneTBB support nested expressions, you can run additional functors from within an already running functor. The previous use case can be rewritten using ``oneapi::tbb::task_group`` as: .. code:: cpp #include #include #include int main() { std::vector items = { 0, 1, 2, 3, 4, 5, 6, 7 }; oneapi::tbb::task_group tg; for (std::size_t i = 0; i < items.size(); ++i) { tg.run([&i = items[i], &tg] { // ... do some work for item i ... if (add_more_parallel_work) // Assuming OtherWork is defined. tg.run(OtherWork{}); }); } tg.wait(); } Task recycling -------------- You can re-run the functor by passing ``*this`` to the ``oneapi::tbb::task_group::run()`` method. The functor will be copied in this case. However, its state can be shared among instances: .. code:: cpp #include #include struct SharedStateFunctor { std::shared_ptr m_shared_data; oneapi::tbb::task_group& m_task_group; void operator()() const { // do some work processing m_shared_data if (has_more_work) m_task_group.run(*this); // Note that this might be concurrently accessing m_shared_data already } }; int main() { // Assuming Data is defined. std::shared_ptr data = std::make_shared(/*params*/); oneapi::tbb::task_group tg; tg.run(SharedStateFunctor{data, tg}); tg.wait(); } Such patterns are particularly useful when the work within a functor is not completed but there is a need for the task scheduler to react to outer circumstances, such as cancellation of group execution. To avoid issues with concurrent access, it is recommended to submit it for re-execution as the last step: .. code:: cpp #include #include struct SharedStateFunctor { std::shared_ptr m_shared_data; oneapi::tbb::task_group& m_task_group; void operator()() const { // do some work processing m_shared_data if (need_to_yield) { m_task_group.run(*this); return; } } }; int main() { // Assuming Data is defined. std::shared_ptr data = std::make_shared(/*params*/); oneapi::tbb::task_group tg; tg.run(SharedStateFunctor{data, tg}); tg.wait(); } Recycling as child or continuation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In oneTBB this kind of recycling is done manually. You have to track when it is time to run the task: .. code:: cpp #include #include #include #include #include struct ContinuationTask { ContinuationTask(std::vector& data, int& result) : m_data(data), m_result(result) {} void operator()() const { for (const auto& item : m_data) m_result += item; } std::vector& m_data; int& m_result; }; struct ChildTask { ChildTask(std::vector& data, int& result, std::atomic& tasks_left, std::atomic& tasks_done, oneapi::tbb::task_group& tg) : m_data(data), m_result(result), m_tasks_left(tasks_left), m_tasks_done(tasks_done), m_tg(tg) {} void operator()() const { std::size_t index = --m_tasks_left; m_data[index] = produce_item_for(index); std::size_t done_num = ++m_tasks_done; if (index % 2 != 0) { // Recycling as child m_tg.run(*this); return; } else if (done_num == m_data.size()) { assert(m_tasks_left == 0); // Spawning a continuation that does reduction m_tg.run(ContinuationTask(m_data, m_result)); } } std::vector& m_data; int& m_result; std::atomic& m_tasks_left; std::atomic& m_tasks_done; oneapi::tbb::task_group& m_tg; }; int main() { int result = 0; std::vector items(10, 0); std::atomic tasks_left{items.size()}; std::atomic tasks_done{0}; oneapi::tbb::task_group tg; for (std::size_t i = 0; i < items.size(); i+=2) { tg.run(ChildTask(items, result, tasks_left, tasks_done, tg)); } tg.wait(); } Scheduler Bypass ---------------- TBB ``task::execute()`` method can return a pointer to a task that can be executed next by the current thread. This might reduce scheduling overheads compared to direct ``spawn``. Similar to ``spawn``, the returned task is not guaranteed to be executed next by the current thread. .. code:: cpp #include // Assuming OtherTask is defined. struct Task : tbb::task { task* execute(){ // some work to do ... auto* other_p = new(this->parent().allocate_child()) OtherTask{}; this->parent().add_ref_count(); return other_p; } }; int main(){ // Assuming RootTask is defined. RootTask& root = *new(tbb::task::allocate_root()) RootTask{}; Task& child = *new(root.allocate_child()) Task{/*params*/}; root.add_ref_count(); tbb::task_spawn(child); root.wait_for_all();; } In oneTBB this can be done using the preview feature of ``oneapi::tbb::task_group``. .. code:: cpp #define TBB_PREVIEW_TASK_GROUP_EXTENSIONS 1 #include // Assuming OtherTask is defined. int main(){ oneapi::tbb::task_group tg; tg.run([&tg](){ //some work to do ... return tg.defer(OtherTask{}); }); tg.wait(); } Here ``oneapi::tbb::task_group::defer`` adds a new task into the ``tg``. However, the task is not put into a queue of tasks ready for execution via ``oneapi::tbb::task_group::run``, but bypassed to the executing thread directly via function return value. Deferred task creation ---------------------- The TBB low-level task API separates the task creation from the actual spawning. This separation allows to postpone the task spawning, while the parent task and final result production are blocked from premature leave. For example, ``RootTask``, ``ChildTask``, and ``CallBackTask`` are the user-side functors that inherit ``tbb::task`` and implement its interface. Then, blocking the ``RootTask`` from leaving prematurely and waiting on it is implemented as follows: .. code:: cpp #include int main() { // Assuming RootTask, ChildTask, and CallBackTask are defined. RootTask& root = *new(tbb::task::allocate_root()) RootTask{}; ChildTask& child = *new(root.allocate_child()) ChildTask{/*params*/}; CallBackTask& cb_task = *new(root.allocate_child()) CallBackTask{/*params*/}; root.set_ref_count(3); tbb::task::spawn(child); register_callback([cb_task&](){ tbb::task::enqueue(cb_task); }); root.wait_for_all(); // Control flow will reach here only after both ChildTask and CallBackTask are executed, // i.e. after the callback is called } In oneTBB this can be done using the preview feature of ``oneapi::tbb::task_group``. .. code:: cpp #define TBB_PREVIEW_TASK_GROUP_EXTENSIONS 1 #include int main(){ oneapi::tbb::task_group tg; oneapi::tbb::task_arena arena; // Assuming ChildTask and CallBackTask are defined. auto cb = tg.defer(CallBackTask{/*params*/}); register_callback([&tg, c = std::move(cb), &arena]{ arena.enqueue(c); }); tg.run(ChildTask{/*params*/}); tg.wait(); // Control flow gets here once both ChildTask and CallBackTask are executed // i.e. after the callback is called } Here ``oneapi::tbb::task_group::defer`` adds a new task into the ``tg``. However, the task is not spawned until ``oneapi::tbb::task_arena::enqueue`` is called. .. note:: The call to ``oneapi::tbb::task_group::wait`` will not return control until both ``ChildTask`` and ``CallBackTask`` are executed.