/* This is dvipdfmx, an eXtended version of dvipdfm by Mark A. Wicks. Copyright (C) 2002-2018 by Jin-Hwan Cho and Shunsaku Hirata, the dvipdfmx project team. Copyright (C) 1998, 1999 by Mark A. Wicks This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "dpx-pdfdraw.h" #include #include #include #include #include #include "dpx-dpxconf.h" #include "dpx-dpxutil.h" #include "dpx-error.h" #include "dpx-mem.h" #include "dpx-pdfcolor.h" #include "dpx-pdfdev.h" #include "dpx-pdfdoc.h" #include "dpx-pdfparse.h" #include "dpx-pdfobj.h" #define OUR_EPSILON 2.5e-16 /* * Numbers are rounding to 0-5 fractional digits * in output routine. */ #define detM(M) ((M).a * (M).d - (M).b * (M).c) #define detP(M) ((M)->a * (M)->d - (M)->b * (M)->c) static /* __inline__ */ int inversematrix (pdf_tmatrix *W, const pdf_tmatrix *M) { double det; det = detP(M); if (fabs(det) < OUR_EPSILON) { dpx_warning("Inverting matrix with zero determinant..."); return -1; /* result is undefined. */ } W->a = (M->d) / det; W->b = -(M->b) / det; W->c = -(M->c) / det; W->d = (M->a) / det; W->e = (M->c) * (M->f) - (M->d) * (M->e); W->f = (M->b) * (M->e) - (M->a) * (M->f); W->e /= det; W->f /= det; return 0; } /* pdf_coord as vector */ #define vecprd(v,w) ((v).x * (w).x + (v).y * (w).y) #define vecrot(v,w) ((v).x * (w).y - (v).y * (w).x) #define dsign(v) (((v) >= 0.0) ? 1.0 : -1.0) /* acos => [0, pi] */ #define vecang(v,w) ( \ dsign(vecrot((v),(w))) * \ acos(vecprd((v),(w)) / sqrt(vecprd((v),(v)) * vecprd((w),(w)))) \ ) static /* __inline__ */ int pdf_coord__equal (const pdf_coord *p1, const pdf_coord *p2) { if (fabs(p1->x - p2->x) < 1.e-7 && fabs(p1->y - p2->y) < 1.e-7) return 1; return 0; } #define COORD_EQUAL(p,q) pdf_coord__equal((p),(q)) static /* __inline__ */ int pdf_coord__transform (pdf_coord *p, const pdf_tmatrix *M) { double x, y; x = p->x; y = p->y; p->x = x * M->a + y * M->c + M->e; p->y = x * M->b + y * M->d + M->f; return 0; } static /* __inline__ */ int pdf_coord__itransform (pdf_coord *p, const pdf_tmatrix *M) { pdf_tmatrix W; double x, y; int error; error = inversematrix(&W, M); if (error) return error; x = p->x; y = p->y; p->x = x * W.a + y * W.c + W.e; p->y = x * W.b + y * W.d + W.f; return 0; } static /* __inline__ */ int pdf_coord__dtransform (pdf_coord *p, const pdf_tmatrix *M) { double x, y; x = p->x; y = p->y; p->x = x * M->a + y * M->c; p->y = x * M->b + y * M->d; return 0; } static /* __inline__ */ int pdf_coord__idtransform (pdf_coord *p, const pdf_tmatrix *M) { pdf_tmatrix W; double x, y; int error; error = inversematrix(&W, M); if (error) return error; x = p->x; y = p->y; p->x = x * W.a + y * W.c; p->y = x * W.b + y * W.d; return 0; } /* Modify M itself */ void pdf_invertmatrix (pdf_tmatrix *M) { pdf_tmatrix W; double det; assert(M); det = detP(M); if (fabs(det) < OUR_EPSILON) { dpx_warning("Inverting matrix with zero determinant..."); W.a = 1.0; W.c = 0.0; W.b = 0.0; W.d = 1.0; W.e = 0.0; W.f = 0.0; } else { W.a = (M->d) / det; W.b = -(M->b) / det; W.c = -(M->c) / det; W.d = (M->a) / det; W.e = (M->c) * (M->f) - (M->d) * (M->e); W.f = (M->b) * (M->e) - (M->a) * (M->f); W.e /= det; W.f /= det; } pdf_copymatrix(M, &W); return; } typedef struct pa_elem_ { int type; pdf_coord p[3]; } pa_elem; /* each subpath delimitted by moveto */ struct pdf_path_ { unsigned int num_paths; unsigned int max_paths; pa_elem *path; }; static const struct { char opchr; /* PDF operator char */ int n_pts; /* number of *points* */ const char *strkey; } petypes[] = { #define PE_TYPE__INVALID -1 #define PE_TYPE__MOVETO 0 {'m', 1, "moveto" }, #define PE_TYPE__LINETO 1 {'l', 1, "lineto" }, #define PE_TYPE__CURVETO 2 {'c', 3, "curveto" }, /* no PS correspondence for v and y */ #define PE_TYPE__CURVETO_V 3 {'v', 2, "vcurveto"}, /* current point replicated */ #define PE_TYPE__CURVETO_Y 4 {'y', 2, "ycurveto"}, /* last point replicated */ #define PE_TYPE__CLOSEPATH 5 {'h', 0, "closepath"}, #define PE_TYPE__TERMINATE 6 {' ', 0, NULL} }; #define PE_VALID(p) ((p) && \ (p)->type > PE_TYPE__INVALID && (p)->type < PE_TYPE__TERMINATE) #define PE_N_PTS(p) (PE_VALID((p)) ? petypes[(p)->type].n_pts : 0) #define PE_OPCHR(p) (PE_VALID((p)) ? petypes[(p)->type].opchr : ' ') #define PA_LENGTH(pa) ((pa)->num_paths) #define GS_FLAG_CURRENTPOINT_SET (1 << 0) #define FORMAT_BUFF_LEN 1024 static char fmt_buf[FORMAT_BUFF_LEN]; static void init_a_path (pdf_path *p) { assert(p); p->num_paths = 0; p->max_paths = 0; p->path = NULL; return; } static void pdf_path__clearpath (pdf_path *p) { assert(p); p->num_paths = 0; return; } static int pdf_path__growpath (pdf_path *p, unsigned int max_pe) { if (max_pe < p->max_paths) return 0; p->max_paths = MAX(p->max_paths + 8, max_pe); p->path = RENEW(p->path, p->max_paths, pa_elem); return 0; } static void clear_a_path (pdf_path *p) { assert(p); p->path = mfree(p->path); p->num_paths = 0; p->max_paths = 0; return; } static int pdf_path__copypath (pdf_path *p1, const pdf_path *p0) { pa_elem *pe0, *pe1; unsigned int i; pdf_path__growpath(p1, PA_LENGTH(p0)); for (i = 0; i < PA_LENGTH(p0); i++) { pe1 = &(p1->path[i]); pe0 = &(p0->path[i]); /* FIXME */ pe1->type = pe0->type; pe1->p[0].x = pe0->p[0].x; pe1->p[0].y = pe0->p[0].y; pe1->p[1].x = pe0->p[1].x; pe1->p[1].y = pe0->p[1].y; pe1->p[2].x = pe0->p[2].x; pe1->p[2].y = pe0->p[2].y; } p1->num_paths = PA_LENGTH(p0); return 0; } /* start new subpath */ static int pdf_path__moveto (pdf_path *pa, pdf_coord *cp, const pdf_coord *p0) { pa_elem *pe; pdf_path__growpath(pa, PA_LENGTH(pa) + 1); if (PA_LENGTH(pa) > 0) { pe = &pa->path[pa->num_paths-1]; if (pe->type == PE_TYPE__MOVETO) { pe->p[0].x = cp->x = p0->x; pe->p[0].y = cp->y = p0->y; return 0; } } pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__MOVETO; pe->p[0].x = cp->x = p0->x; pe->p[0].y = cp->y = p0->y; return 0; } /* Do 'compression' of path while adding new path elements. * Sequantial moveto command will be replaced with a * single moveto. If cp is not equal to the last point in pa, * then moveto is inserted (starting new subpath). * FIXME: * 'moveto' must be used to enforce starting new path. * This affects how 'closepath' is treated. */ static pa_elem * pdf_path__next_pe (pdf_path *pa, const pdf_coord *cp) { pa_elem *pe; pdf_path__growpath(pa, PA_LENGTH(pa) + 2); if (PA_LENGTH(pa) == 0) { pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__MOVETO; pe->p[0].x = cp->x; pe->p[0].y = cp->y; return &pa->path[pa->num_paths++]; } pe = &pa->path[pa->num_paths-1]; switch (pe->type) { case PE_TYPE__MOVETO: pe->p[0].x = cp->x; pe->p[0].y = cp->y; break; case PE_TYPE__LINETO: if (!COORD_EQUAL(&pe->p[0], cp)) { pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__MOVETO; pe->p[0].x = cp->x; pe->p[0].y = cp->y; } break; case PE_TYPE__CURVETO: if (!COORD_EQUAL(&pe->p[2], cp)) { pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__MOVETO; pe->p[0].x = cp->x; pe->p[0].y = cp->y; } break; case PE_TYPE__CURVETO_Y: case PE_TYPE__CURVETO_V: if (!COORD_EQUAL(&pe->p[1], cp)) { pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__MOVETO; pe->p[0].x = cp->x; pe->p[0].y = cp->y; } break; case PE_TYPE__CLOSEPATH: pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__MOVETO; pe->p[0].x = cp->x; pe->p[0].y = cp->y; break; } return &pa->path[pa->num_paths++]; } static int pdf_path__transform (pdf_path *pa, const pdf_tmatrix *M) { pa_elem *pe; unsigned int n = 0, i; assert(pa && M); for (i = 0; i < PA_LENGTH(pa); i++) { pe = &(pa->path[i]); n = PE_N_PTS(pe); while (n-- > 0) pdf_coord__transform(&(pe->p[n]), M); } return 0; } /* Path Construction */ static int pdf_path__lineto (pdf_path *pa, pdf_coord *cp, const pdf_coord *p0) { pa_elem *pe; pe = pdf_path__next_pe(pa, cp); pe->type = PE_TYPE__LINETO; pe->p[0].x = cp->x = p0->x; pe->p[0].y = cp->y = p0->y; return 0; } static int pdf_path__curveto (pdf_path *pa, pdf_coord *cp, const pdf_coord *p0, const pdf_coord *p1, const pdf_coord *p2 ) { pa_elem *pe; pe = pdf_path__next_pe(pa, cp); if (COORD_EQUAL(cp, p0)) { pe->type = PE_TYPE__CURVETO_V; pe->p[0].x = p1->x; pe->p[0].y = p1->y; pe->p[1].x = cp->x = p2->x; pe->p[1].y = cp->y = p2->y; } else if (COORD_EQUAL(p1, p2)) { pe->type = PE_TYPE__CURVETO_Y; pe->p[0].x = p0->x; pe->p[0].y = p0->y; pe->p[1].x = cp->x = p1->x; pe->p[1].y = cp->y = p1->y; } else { pe->type = PE_TYPE__CURVETO; pe->p[0].x = p0->x; pe->p[0].y = p0->y; pe->p[1].x = p1->x; pe->p[1].y = p1->y; pe->p[2].x = cp->x = p2->x; pe->p[2].y = cp->y = p2->y; } return 0; } /* This isn't specified as cp to somewhere. */ static int pdf_path__elliptarc (pdf_path *pa, pdf_coord *cp, const pdf_coord *ca, /* ellipsis center */ double r_x, /* x radius */ double r_y, /* y radius */ double xar, /* x-axis-rotation (deg!) */ double a_0, /* start angle */ double a_1, /* stop angle */ int a_d /* arc orientation */ ) { double b, b_x, b_y; double d_a, q; pdf_coord p0, p1, p2, p3; pdf_coord e0, e1; pdf_tmatrix T; int n_c; /* number of segments */ int i, error = 0; if (fabs(r_x) < OUR_EPSILON || fabs(r_y) < OUR_EPSILON) return -1; if (a_d < 0) { for ( ; a_1 > a_0; a_1 -= 360.0); } else { for ( ; a_1 < a_0; a_0 -= 360.0); } d_a = a_1 - a_0; for (n_c = 1; fabs(d_a) > 90.0 * n_c; n_c++); d_a /= n_c; if (fabs(d_a) < OUR_EPSILON) return -1; a_0 *= M_PI / 180.0; a_1 *= M_PI / 180.0; d_a *= M_PI / 180.0; xar *= M_PI / 180.0; T.a = cos(xar); T.c = -sin(xar); T.b = -T.c ; T.d = T.a; T.e = 0.0 ; T.f = 0.0; /* A parameter that controls cb-curve (off-curve) points */ b = 4.0 * (1.0 - cos(.5 * d_a)) / (3.0 * sin(.5 * d_a)); b_x = r_x * b; b_y = r_y * b; p0.x = r_x * cos(a_0); p0.y = r_y * sin(a_0); pdf_coord__transform(&p0, &T); p0.x += ca->x; p0.y += ca->y; if (PA_LENGTH(pa) == 0) { pdf_path__moveto(pa, cp, &p0); } else if (!COORD_EQUAL(cp, &p0)) { pdf_path__lineto(pa, cp, &p0); /* add line seg */ } for (i = 0; !error && i < n_c; i++) { q = a_0 + i * d_a; e0.x = cos(q); e0.y = sin(q); e1.x = cos(q + d_a); e1.y = sin(q + d_a); /* Condition for tangent vector requirs * d1 = p1 - p0 = f ( sin a, -cos a) * d2 = p2 - p3 = g ( sin b, -cos b) * and from symmetry * g^2 = f^2 */ p0.x = r_x * e0.x; /* s.p. */ p0.y = r_y * e0.y; p3.x = r_x * e1.x; /* e.p. */ p3.y = r_y * e1.y; p1.x = -b_x * e0.y; p1.y = b_y * e0.x; p2.x = b_x * e1.y; p2.y = -b_y * e1.x; pdf_coord__transform(&p0, &T); pdf_coord__transform(&p1, &T); pdf_coord__transform(&p2, &T); pdf_coord__transform(&p3, &T); p0.x += ca->x; p0.y += ca->y; p3.x += ca->x; p3.y += ca->y; p1.x += p0.x ; p1.y += p0.y ; p2.x += p3.x ; p2.y += p3.y ; error = pdf_path__curveto(pa, &p0, &p1, &p2, &p3); cp->x = p3.x; cp->y = p3.y; } return error; } static int pdf_path__closepath (pdf_path *pa, pdf_coord *cp /* no arg */) { pa_elem *pe = NULL; int i; /* search for start point of the last subpath */ for (i = PA_LENGTH(pa) - 1; i >= 0; i--) { pe = &pa->path[i]; if (pe->type == PE_TYPE__MOVETO) break; } if (!pe || i < 0) return -1; /* No path or no start point(!) */ cp->x = pe->p[0].x; cp->y = pe->p[0].y; pdf_path__growpath(pa, PA_LENGTH(pa) + 1); /* NOTE: * Manually closed path without closepath is not * affected by linejoin. A path with coincidental * starting and ending point is not the same as * 'closed' path. */ pe = &pa->path[pa->num_paths++]; pe->type = PE_TYPE__CLOSEPATH; return 0; } /* * x y width height re * * is equivalent to * * x y m * (x + width) y l * (x + width) (y + height) l * x (y + height) l * h */ /* Just for quick test */ static /* __inline__ */ int pdf_path__isarect (pdf_path *pa, int f_ir /* fill-rule is ignorable */ ) { pa_elem *pe0, *pe1, *pe2, *pe3, *pe4; if (PA_LENGTH(pa) == 5) { pe0 = &(pa->path[0]); pe1 = &(pa->path[1]); pe2 = &(pa->path[2]); pe3 = &(pa->path[3]); pe4 = &(pa->path[4]); if (pe0->type == PE_TYPE__MOVETO && pe1->type == PE_TYPE__LINETO && pe2->type == PE_TYPE__LINETO && pe3->type == PE_TYPE__LINETO && pe4->type == PE_TYPE__CLOSEPATH) { if (pe1->p[0].y - pe0->p[0].y == 0 && pe2->p[0].x - pe1->p[0].x == 0 && pe3->p[0].y - pe2->p[0].y == 0) { if (pe1->p[0].x - pe0->p[0].x == pe2->p[0].x - pe3->p[0].x) { return 1; } /* Winding number is different but ignore it here. */ } else if (f_ir && pe1->p[0].x - pe0->p[0].x == 0 && pe2->p[0].y - pe1->p[0].y == 0 && pe3->p[0].x - pe2->p[0].x == 0) { if (pe1->p[0].y - pe0->p[0].y == pe2->p[0].y - pe3->p[0].y) { return 1; } } } } return 0; } /* Path Painting */ /* F is obsoleted */ #define PT_OP_VALID(c) ( \ (c) == 'f' || (c) == 'F' || \ (c) == 's' || (c) == 'S' || \ (c) == 'b' || (c) == 'B' || \ (c) == 'W' \ ) static /* __inline__ */ int INVERTIBLE_MATRIX (const pdf_tmatrix *M) { if (fabs(detP(M)) < OUR_EPSILON) { dpx_warning("Transformation matrix not invertible."); dpx_warning("--- M = [%g %g %g %g %g %g]", M->a, M->b, M->c, M->d, M->e, M->f); return -1; } return 0; } /* rectfill, rectstroke, rectclip, recteoclip * * Draw isolated rectangle without actually doing * gsave/grestore operation. * * TODO: * linestyle, fill-opacity, stroke-opacity,.... * As this routine draw a single graphics object * each time, there should be options for specifying * various drawing styles, which might inherite * current graphcs state parameter. */ static int pdf_dev__rectshape (const pdf_rect *r, const pdf_tmatrix *M, char opchr ) { char *buf = fmt_buf; int len = 0; int isclip = 0; pdf_coord p; double wd, ht; assert(r && PT_OP_VALID(opchr)); isclip = (opchr == 'W') ? 1 : 0; /* disallow matrix for clipping. * q ... clip Q does nothing and * n M cm ... clip n alter CTM. */ if (M && (isclip || !INVERTIBLE_MATRIX(M))) return -1; graphics_mode(); if (!isclip) { pdf_dev_gsave(); } pdf_dev_newpath(); if (!isclip && M) { pdf_dev_concat(M); } p.x = r->llx; p.y = r->lly; wd = r->urx - r->llx; ht = r->ury - r->lly; buf[len++] = ' '; len += pdf_sprint_coord (buf + len, &p); buf[len++] = ' '; len += pdf_sprint_length(buf + len, wd); buf[len++] = ' '; len += pdf_sprint_length(buf + len, ht); buf[len++] = ' '; buf[len++] = 'r'; buf[len++] = 'e'; buf[len++] = ' '; buf[len++] = opchr; pdf_doc_add_page_content(buf, len); if (isclip) { pdf_dev_newpath(); } else { pdf_dev_grestore(); } return 0; } /* FIXME */ static int pdf_dev__flushpath (pdf_path *pa, char opchr, int rule, int ignore_rule) { pa_elem *pe, *pe1; char *b = fmt_buf; int b_len = FORMAT_BUFF_LEN; pdf_rect r; /* FIXME */ pdf_coord *pt; int n_pts, n_seg; int len = 0; int isrect, i, j; assert(pa && PT_OP_VALID(opchr)); if (PA_LENGTH(pa) <= 0) return 0; graphics_mode(); isrect = pdf_path__isarect(pa, ignore_rule); if (isrect) { pe = &(pa->path[0]); pe1 = &(pa->path[2]); r.llx = pe->p[0].x; r.lly = pe->p[0].y; r.urx = pe1->p[0].x - pe->p[0].x; /* width... */ r.ury = pe1->p[0].y - pe->p[0].y; /* height... */ b[len++] = ' '; len += pdf_sprint_rect(b + len, &r); b[len++] = ' '; b[len++] = 'r'; b[len++] = 'e'; pdf_doc_add_page_content(b, len); /* op: re */ len = 0; } else { n_seg = PA_LENGTH(pa); for (i = 0, len = 0, pe = &pa->path[0]; i < n_seg; pe++, i++) { n_pts = PE_N_PTS(pe); for (j = 0, pt = &pe->p[0]; j < n_pts; j++, pt++) { b[len++] = ' '; len += pdf_sprint_coord(b + len, pt); } b[len++] = ' '; b[len++] = PE_OPCHR(pe); if (len + 128 > b_len) { pdf_doc_add_page_content(b, len); /* op: m l c v y h */ len = 0; } } if (len > 0) { pdf_doc_add_page_content(b, len); /* op: m l c v y h */ len = 0; } } b[len++] = ' '; b[len++] = opchr; if (rule == PDF_FILL_RULE_EVENODD) b[len++] = '*'; pdf_doc_add_page_content(b, len); /* op: f F s S b B W f* F* s* S* b* B* W* */ return 0; } /* ExtGState stack */ static dpx_stack xgs_stack; static int xgs_count = 0; struct xgs_res { pdf_obj *object; pdf_obj *accumlated; }; static const char default_xgs[] = "\ << /Type /ExtGState\ /LW 1 /LC 0 /LJ 0 /ML 10 /D [[] 0]\ /RI /RelativeColorimetric /SA false /BM /Normal /SMask /None\ /AIS false /TK false /CA 1 /ca 1\ /OP false /op false /OPM 0 /FL 1\ >>"; static void init_xgstate (void) { dpx_stack_init(&xgs_stack); xgs_count = 0; return; } static void clear_xgstate (void) { struct xgs_res *xgs; while ((xgs = dpx_stack_pop(&xgs_stack)) != NULL) { pdf_release_obj(xgs->object); pdf_release_obj(xgs->accumlated); free(xgs); } return; } /* Graphics State */ typedef struct pdf_gstate_ { pdf_coord cp; pdf_tmatrix matrix; /* cm, - */ pdf_color strokecolor; pdf_color fillcolor; /* colorspace here */ struct { int num_dash; double pattern[PDF_DASH_SIZE_MAX]; double offset; } linedash; /* d, D */ double linewidth; /* w, LW */ int linecap; /* J, LC */ int linejoin; /* j, LJ */ double miterlimit; /* M, ML */ int flatness; /* i, FL, 0 to 100 (0 for use device-default) */ /* internal */ pdf_path path; int flags; pdf_obj *extgstate; } pdf_gstate; static dpx_stack gs_stack = { 0, NULL, NULL }; static void init_a_gstate (pdf_gstate *gs) { gs->cp.x = 0.0; gs->cp.y = 0.0; pdf_setmatrix(&gs->matrix, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0); pdf_color_black(&gs->strokecolor); pdf_color_black(&gs->fillcolor); gs->linedash.num_dash = 0; gs->linedash.offset = 0; gs->linecap = 0; gs->linejoin = 0; gs->linewidth = 1.0; gs->miterlimit = 10.0; gs->flatness = 1; /* default to 1 in PDF */ /* Internal variables */ gs->flags = 0; init_a_path(&gs->path); gs->extgstate = NULL; return; } static void clear_a_gstate (pdf_gstate *gs) { clear_a_path(&gs->path); if (gs->extgstate) pdf_release_obj(gs->extgstate); memset(gs, 0, sizeof(pdf_gstate)); return; } static void copy_a_gstate (pdf_gstate *gs1, pdf_gstate *gs2) { int i; assert(gs1 && gs2); gs1->cp.x = gs2->cp.x; gs1->cp.y = gs2->cp.y; pdf_copymatrix(&gs1->matrix, &gs2->matrix); /* TODO: * Path should be linked list and gsave only * record starting point within path rather than * copying whole path. */ pdf_path__copypath(&gs1->path, &gs2->path); gs1->linedash.num_dash = gs2->linedash.num_dash; for (i = 0; i < gs2->linedash.num_dash; i++) { gs1->linedash.pattern[i] = gs2->linedash.pattern[i]; } gs1->linedash.offset = gs2->linedash.offset; gs1->linecap = gs2->linecap; gs1->linejoin = gs2->linejoin; gs1->linewidth = gs2->linewidth; gs1->miterlimit = gs2->miterlimit; gs1->flatness = gs2->flatness; pdf_color_copycolor(&gs1->fillcolor , &gs2->fillcolor); pdf_color_copycolor(&gs1->strokecolor, &gs2->strokecolor); gs1->extgstate = gs2->extgstate ? pdf_link_obj(gs2->extgstate) : NULL; return; } static int pdf_dev_set_xgstate (pdf_obj *diff, pdf_obj *accumlated) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); char buf[64], res_name[16]; int len = 0, id; id = xgs_count; snprintf(res_name, 16, "DPX_GS%d", id); res_name[15] = '\0'; len += snprintf(buf, 64, " /%s gs", res_name); pdf_doc_add_page_content(buf, len); pdf_doc_add_page_resource("ExtGState", res_name, pdf_link_obj(diff)); if (gs->extgstate) pdf_release_obj(gs->extgstate); gs->extgstate = pdf_link_obj(accumlated); xgs_count++; return 0; } int pdf_dev_reset_xgstate (int force) { dpx_stack *gss = &gs_stack; pdf_gstate *gs; pdf_obj *current, *target, *keys, *diff; struct xgs_res *xgs; int i, need_reset = 0; gs = dpx_stack_top(gss); xgs = dpx_stack_top(&xgs_stack); if (xgs) { target = pdf_link_obj(xgs->accumlated); } else { const char *ptr, *endptr; if (!gs->extgstate && !force) return 0; ptr = default_xgs; endptr = ptr + strlen(ptr); target = parse_pdf_dict(&ptr, endptr, NULL); } if (gs->extgstate) { current = pdf_link_obj(gs->extgstate); } else { const char *ptr, *endptr; ptr = default_xgs; endptr = ptr + strlen(ptr); current = parse_pdf_dict(&ptr, endptr, NULL); } diff = pdf_new_dict(); keys = pdf_dict_keys(target); for (i = 0; i < pdf_array_length(keys); i++) { pdf_obj *key, *value1, *value2; int is_diff = 0; key = pdf_get_array(keys, i); value1 = pdf_lookup_dict(target, pdf_name_value(key)); value2 = pdf_lookup_dict(current, pdf_name_value(key)); is_diff = pdf_compare_object(value1, value2); if (is_diff) { pdf_add_dict(diff, pdf_link_obj(key), pdf_link_obj(value1)); need_reset = 1; } } pdf_release_obj(keys); if (need_reset) pdf_dev_set_xgstate(diff, target); pdf_release_obj(diff); pdf_release_obj(current); pdf_release_obj(target); return 0; } void pdf_dev_xgstate_push (pdf_obj *object) { struct xgs_res *target, *current; pdf_obj *accumlated; target = NEW(1, struct xgs_res); target->object = object; current = dpx_stack_top(&xgs_stack); if (!current) { const char *ptr, *endptr; ptr = default_xgs; endptr = ptr + strlen(default_xgs); accumlated = parse_pdf_dict(&ptr, endptr, NULL); } else { accumlated = pdf_new_dict(); pdf_merge_dict(accumlated, current->accumlated); } pdf_merge_dict(accumlated, object); target->accumlated = accumlated; dpx_stack_push(&xgs_stack, target); pdf_dev_set_xgstate(target->object, target->accumlated); return; } void pdf_dev_xgstate_pop (void) { struct xgs_res *current, *target; pdf_obj *accumlated, *revert, *keys; int i; current = dpx_stack_pop(&xgs_stack); target = dpx_stack_top(&xgs_stack); if (!current) { dpx_warning("Too many pop operation for ExtGState!"); return; } if (!target) { const char *ptr, *endptr; ptr = default_xgs; endptr = ptr + strlen(default_xgs); accumlated = parse_pdf_dict(&ptr, endptr, NULL); } else { accumlated = pdf_link_obj(target->accumlated); } keys = pdf_dict_keys(current->object); revert = pdf_new_dict(); for (i = 0; i < pdf_array_length(keys); i++) { pdf_obj *key, *value; key = pdf_get_array(keys, i); value = pdf_lookup_dict(accumlated, pdf_name_value(key)); if (!value) { dpx_warning("No previous ExtGState entry known for \"%s\", ignoring...", pdf_name_value(key)); } else { pdf_add_dict(revert, pdf_link_obj(key), pdf_link_obj(value)); } } pdf_dev_set_xgstate(revert, accumlated); pdf_release_obj(revert); pdf_release_obj(keys); pdf_release_obj(accumlated); pdf_release_obj(current->object); pdf_release_obj(current->accumlated); free(current); return; } void pdf_dev_init_gstates (void) { pdf_gstate *gs; /* Tectonic: this function is called twice in the xdvipdfmx driver init, * resulting in a small amount of leaked memory. We statically initialize the * stack variable to make it possible to safely avoid the leak in this * situation. */ while ((gs = dpx_stack_pop(&gs_stack)) != NULL) { clear_a_gstate(gs); free(gs); } dpx_stack_init(&gs_stack); gs = NEW(1, pdf_gstate); init_a_gstate(gs); dpx_stack_push(&gs_stack, gs); /* Initial state */ init_xgstate(); return; } void pdf_dev_clear_gstates (void) { pdf_gstate *gs; if (dpx_stack_depth(&gs_stack) > 1) /* at least 1 elem. */ dpx_warning("GS stack depth is not zero at the end of the document."); while ((gs = dpx_stack_pop(&gs_stack)) != NULL) { clear_a_gstate(gs); free(gs); } clear_xgstate(); return; } int pdf_dev_gsave (void) { pdf_gstate *gs0, *gs1; gs0 = dpx_stack_top(&gs_stack); gs1 = NEW(1, pdf_gstate); init_a_gstate(gs1); copy_a_gstate(gs1, gs0); dpx_stack_push(&gs_stack, gs1); pdf_doc_add_page_content(" q", 2); /* op: q */ return 0; } int pdf_dev_grestore (void) { pdf_gstate *gs; if (dpx_stack_depth(&gs_stack) <= 1) { /* Initial state at bottom */ dpx_warning("Too many grestores."); return -1; } gs = dpx_stack_pop(&gs_stack); clear_a_gstate(gs); free(gs); pdf_doc_add_page_content(" Q", 2); /* op: Q */ pdf_dev_reset_fonts(0); return 0; } int pdf_dev_push_gstate (void) { dpx_stack *gss = &gs_stack; pdf_gstate *gs0; gs0 = NEW(1, pdf_gstate); init_a_gstate(gs0); dpx_stack_push(gss, gs0); return 0; } int pdf_dev_pop_gstate (void) { dpx_stack *gss = &gs_stack; pdf_gstate *gs; if (dpx_stack_depth(gss) <= 1) { /* Initial state at bottom */ dpx_warning("Too many grestores."); return -1; } gs = dpx_stack_pop(gss); clear_a_gstate(gs); free(gs); return 0; } int pdf_dev_current_depth (void) { return (dpx_stack_depth(&gs_stack) - 1); /* 0 means initial state */ } void pdf_dev_grestore_to (int depth) { dpx_stack *gss = &gs_stack; pdf_gstate *gs; assert(depth >= 0); if (dpx_stack_depth(gss) > depth + 1) { dpx_warning("Closing pending transformations at end of page/XObject."); } while (dpx_stack_depth(gss) > depth + 1) { pdf_doc_add_page_content(" Q", 2); /* op: Q */ gs = dpx_stack_pop(gss); clear_a_gstate(gs); free(gs); } pdf_dev_reset_fonts(0); return; } int pdf_dev_currentpoint (pdf_coord *p) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_coord *cpt = &gs->cp; assert(p); p->x = cpt->x; p->y = cpt->y; return 0; } int pdf_dev_currentmatrix (pdf_tmatrix *M) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_tmatrix *CTM = &gs->matrix; assert(M); pdf_copymatrix(M, CTM); return 0; } /* * mask == 0 means stroking color, mask == 0x20 nonstroking color * * force == 1 means that operators will be generated even if * the color is the same as the current graphics state color */ void pdf_dev_set_color (const pdf_color *color, char mask, int force) { int len; pdf_gstate *gs = dpx_stack_top(&gs_stack); pdf_color *current = mask ? &gs->fillcolor : &gs->strokecolor; if (!(pdf_dev_get_param(PDF_DEV_PARAM_COLORMODE) && (force || pdf_color_compare(color, current)))) /* If "color" is already the current color, then do nothing * unless a color operator is forced */ return; graphics_mode(); len = pdf_color_set_color(color, fmt_buf, FORMAT_BUFF_LEN, mask); pdf_doc_add_page_content(fmt_buf, len); /* op: RG K G rg k g etc. */ pdf_color_copycolor(current, color); } int pdf_dev_concat (const pdf_tmatrix *M) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_tmatrix *CTM = &gs->matrix; pdf_tmatrix W = {0, 0, 0, 0, 0, 0}; /* Init to avoid compiler warning */ char *buf = fmt_buf; int len = 0; assert(M); /* Adobe Reader erases page content if there are * non invertible transformation. */ if (fabs(detP(M)) < OUR_EPSILON) { dpx_warning("Transformation matrix not invertible."); dpx_warning("--- M = [%g %g %g %g %g %g]", M->a, M->b, M->c, M->d, M->e, M->f); return -1; } if (fabs(M->a - 1.0) > OUR_EPSILON || fabs(M->b) > OUR_EPSILON || fabs(M->c) > OUR_EPSILON || fabs(M->d - 1.0) > OUR_EPSILON || fabs(M->e) > OUR_EPSILON || fabs(M->f) > OUR_EPSILON) { buf[len++] = ' '; len += pdf_sprint_matrix(buf + len, M); buf[len++] = ' '; buf[len++] = 'c'; buf[len++] = 'm'; pdf_doc_add_page_content(buf, len); /* op: cm */ pdf_concatmatrix(CTM, M); } inversematrix(&W, M); pdf_path__transform (cpa, &W); pdf_coord__transform(cpt, &W); return 0; } /* * num w LW linewidth (g.t. 0) * int J LC linecap * int j LJ linejoin * num M ML miter limit (g.t. 0) * array num d D line dash * int ri RI renderint intnet * int i FL flatness tolerance (0-100) * name gs -- name: res. name of ExtGState dict. */ int pdf_dev_setmiterlimit (double mlimit) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); int len = 0; char *buf = fmt_buf; if (gs->miterlimit != mlimit) { buf[len++] = ' '; len += pdf_sprint_length(buf + len, mlimit); buf[len++] = ' '; buf[len++] = 'M'; pdf_doc_add_page_content(buf, len); /* op: M */ gs->miterlimit = mlimit; } return 0; } int pdf_dev_setlinecap (int capstyle) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); int len = 0; char *buf = fmt_buf; if (gs->linecap != capstyle) { len = sprintf(buf, " %d J", capstyle); pdf_doc_add_page_content(buf, len); /* op: J */ gs->linecap = capstyle; } return 0; } int pdf_dev_setlinejoin (int joinstyle) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); int len = 0; char *buf = fmt_buf; if (gs->linejoin != joinstyle) { len = sprintf(buf, " %d j", joinstyle); pdf_doc_add_page_content(buf, len); /* op: j */ gs->linejoin = joinstyle; } return 0; } int pdf_dev_setlinewidth (double width) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); int len = 0; char *buf = fmt_buf; if (gs->linewidth != width) { buf[len++] = ' '; len += pdf_sprint_length(buf + len, width); buf[len++] = ' '; buf[len++] = 'w'; pdf_doc_add_page_content(buf, len); /* op: w */ gs->linewidth = width; } return 0; } int pdf_dev_setdash (int count, double *pattern, double offset) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); int len = 0; char *buf = fmt_buf; int i; gs->linedash.num_dash = count; gs->linedash.offset = offset; pdf_doc_add_page_content(" [", 2); /* op: */ for (i = 0; i < count; i++) { buf[0] = ' '; len = pdf_sprint_length (buf + 1, pattern[i]); pdf_doc_add_page_content(buf, len + 1); /* op: */ gs->linedash.pattern[i] = pattern[i]; } pdf_doc_add_page_content("] ", 2); /* op: */ len = pdf_sprint_length (buf, offset); pdf_doc_add_page_content(buf, len); /* op: */ pdf_doc_add_page_content(" d", 2); /* op: d */ return 0; } /* ZSYUEDVEDEOF */ int pdf_dev_clip (void) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; return pdf_dev__flushpath(cpa, 'W', PDF_FILL_RULE_NONZERO, 0); } int pdf_dev_eoclip (void) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; return pdf_dev__flushpath(cpa, 'W', PDF_FILL_RULE_EVENODD, 0); } int pdf_dev_flushpath (char p_op, int fill_rule) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; int error = 0; /* last arg 'ignore_rule' is only for single object * that can be converted to a rect where fill rule * is inessential. */ error = pdf_dev__flushpath(cpa, p_op, fill_rule, 1); pdf_path__clearpath(cpa); gs->flags &= ~GS_FLAG_CURRENTPOINT_SET; return error; } int pdf_dev_newpath (void) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *p = &gs->path; if (PA_LENGTH(p) > 0) { pdf_path__clearpath (p); } /* The following is required for "newpath" operator in mpost.c. */ pdf_doc_add_page_content(" n", 2); /* op: n */ return 0; } int pdf_dev_moveto (double x, double y) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p; p.x = x; p.y = y; return pdf_path__moveto(cpa, cpt, &p); /* cpt updated */ } int pdf_dev_rmoveto (double x, double y) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p; p.x = cpt->x + x; p.y = cpt->y + y; return pdf_path__moveto(cpa, cpt, &p); /* cpt updated */ } int pdf_dev_lineto (double x, double y) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p0; p0.x = x; p0.y = y; return pdf_path__lineto(cpa, cpt, &p0); } int pdf_dev_rlineto (double x, double y) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p0; p0.x = x + cpt->x; p0.y = y + cpt->y; return pdf_path__lineto(cpa, cpt, &p0); } int pdf_dev_curveto (double x0, double y0, double x1, double y1, double x2, double y2) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p0, p1, p2; p0.x = x0; p0.y = y0; p1.x = x1; p1.y = y1; p2.x = x2; p2.y = y2; return pdf_path__curveto(cpa, cpt, &p0, &p1, &p2); } int pdf_dev_rcurveto (double x0, double y0, double x1, double y1, double x2, double y2) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p0, p1, p2; p0.x = x0 + cpt->x; p0.y = y0 + cpt->y; p1.x = x1 + cpt->x; p1.y = y1 + cpt->y; p2.x = x2 + cpt->x; p2.y = y2 + cpt->y; return pdf_path__curveto(cpa, cpt, &p0, &p1, &p2); } int pdf_dev_closepath (void) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_coord *cpt = &gs->cp; pdf_path *cpa = &gs->path; return pdf_path__closepath(cpa, cpt); } void pdf_dev_dtransform (pdf_coord *p, const pdf_tmatrix *M) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_tmatrix *CTM = &gs->matrix; assert(p); pdf_coord__dtransform(p, (M ? M : CTM)); return; } void pdf_dev_idtransform (pdf_coord *p, const pdf_tmatrix *M) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_tmatrix *CTM = &gs->matrix; assert(p); pdf_coord__idtransform(p, (M ? M : CTM)); return; } void pdf_dev_transform (pdf_coord *p, const pdf_tmatrix *M) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_tmatrix *CTM = &gs->matrix; assert(p); pdf_coord__transform(p, (M ? M : CTM)); return; } void pdf_dev_itransform (pdf_coord *p, const pdf_tmatrix *M) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_tmatrix *CTM = &gs->matrix; assert(p); pdf_coord__itransform(p, (M ? M : CTM)); return; } int pdf_dev_arc (double c_x , double c_y, double r, double a_0 , double a_1) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord c; c.x = c_x; c.y = c_y; return pdf_path__elliptarc(cpa, cpt, &c, r, r, 0.0, a_0, a_1, +1); } /* *negative* arc */ int pdf_dev_arcn (double c_x , double c_y, double r, double a_0 , double a_1) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord c; c.x = c_x; c.y = c_y; return pdf_path__elliptarc(cpa, cpt, &c, r, r, 0.0, a_0, a_1, -1); } int pdf_dev_arcx (double c_x , double c_y, double r_x , double r_y, double a_0 , double a_1, int a_d , double xar) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord c; c.x = c_x; c.y = c_y; return pdf_path__elliptarc(cpa, cpt, &c, r_x, r_y, xar, a_0, a_1, a_d); } /* Required by Tpic */ int pdf_dev_bspline (double x0, double y0, double x1, double y1, double x2, double y2) { dpx_stack *gss = &gs_stack; pdf_gstate *gs = dpx_stack_top(gss); pdf_path *cpa = &gs->path; pdf_coord *cpt = &gs->cp; pdf_coord p1, p2, p3; p1.x = x0 + 2.0 * (x1 - x0) / 3.0; p1.y = y0 + 2.0 * (y1 - y0) / 3.0; p2.x = x1 + (x2 - x1) / 3.0; p2.y = y1 + (y2 - y1) / 3.0; p3.x = x2; p3.y = y2; return pdf_path__curveto(cpa, cpt, &p1, &p2, &p3); } int pdf_dev_rectstroke (double x, double y, double w, double h, const pdf_tmatrix *M /* optional */ ) { pdf_rect r; r.llx = x; r.lly = y; r.urx = x + w; r.ury = y + h; return pdf_dev__rectshape(&r, M, 'S'); } int pdf_dev_rectfill (double x, double y, double w, double h) { pdf_rect r; r.llx = x; r.lly = y; r.urx = x + w; r.ury = y + h; return pdf_dev__rectshape(&r, NULL, 'f'); } int pdf_dev_rectclip (double x, double y, double w, double h) { pdf_rect r; r.llx = x; r.lly = y; r.urx = x + w; r.ury = y + h; return pdf_dev__rectshape(&r, NULL, 'W'); }