syntax = "proto3"; package tensorflow; option cc_enable_arenas = true; option java_outer_classname = "FunctionProtos"; option java_multiple_files = true; option java_package = "org.tensorflow.framework"; option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework"; import "tensorflow/core/framework/attr_value.proto"; import "tensorflow/core/framework/node_def.proto"; import "tensorflow/core/framework/op_def.proto"; // A library is a set of named functions. message FunctionDefLibrary { repeated FunctionDef function = 1; repeated GradientDef gradient = 2; } // A function can be instantiated when the runtime can bind every attr // with a value. When a GraphDef has a call to a function, it must // have binding for every attr defined in the signature. // // TODO(zhifengc): // * device spec, etc. message FunctionDef { // The definition of the function's name, arguments, return values, // attrs etc. OpDef signature = 1; // Attributes specific to this function definition. map attr = 5; // Attributes for function arguments. These attributes are the same set of // valid attributes as to _Arg nodes. message ArgAttrs { map attr = 1; } map arg_attr = 7; // NOTE: field id 2 deleted on Jan 11, 2017, GraphDef version 21. reserved 2; // In both of the following fields, there is the need to specify an // output that is used as either the input to another node (in // `node_def`) or as a return value of the function (in `ret`). // Unlike the NodeDefs in GraphDef, we need to be able to specify a // list in some cases (instead of just single outputs). Also, we // need to be able to deal with lists of unknown length (so the // output index may not be known at function definition time). So // we use the following format instead: // * "fun_in" where "fun_in" is the name of a function input arg in // the `signature` field above. This represents that input, whether // it is a single tensor or a list. // * "fun_in:0" gives the first element of a function input arg (a // non-list input is considered a list of length 1 for these // purposes). // * "node:out" where "node" is the name of a node in `node_def` and // "out" is the name one of its op's output arguments (the name // comes from the OpDef of the node's op). This represents that // node's output, whether it is a single tensor or a list. // Note: We enforce that an op's output arguments are never // renamed in the backwards-compatibility test. // * "node:out:0" gives the first element of a node output arg (a // non-list output is considered a list of length 1 for these // purposes). // // NOT CURRENTLY SUPPORTED (but may be in the future): // * "node:out:-1" gives last element in a node output list // * "node:out:1:" gives a list with all but the first element in a // node output list // * "node:out::-1" gives a list with all but the last element in a // node output list // The body of the function. Unlike the NodeDefs in a GraphDef, attrs // may have values of type `placeholder` and the `input` field uses // the "output" format above. // By convention, "op" in node_def is resolved by consulting with a // user-defined library first. If not resolved, "func" is assumed to // be a builtin op. repeated NodeDef node_def = 3; // A mapping from the output arg names from `signature` to the // outputs from `node_def` that should be returned by the function. map ret = 4; // A mapping from control output names from `signature` to node names in // `node_def` which should be control outputs of this function. map control_ret = 6; } // GradientDef defines the gradient function of a function defined in // a function library. // // A gradient function g (specified by gradient_func) for a function f // (specified by function_name) must follow the following: // // The function 'f' must be a numerical function which takes N inputs // and produces M outputs. Its gradient function 'g', which is a // function taking N + M inputs and produces N outputs. // // I.e. if we have // (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), // then, g is // (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, // dL/dy1, dL/dy2, ..., dL/dy_M), // where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the // loss function). dL/dx_i is the partial derivative of L with respect // to x_i. message GradientDef { string function_name = 1; // The function name. string gradient_func = 2; // The gradient function's name. }