syntax = "proto3"; package tensorflow; option cc_enable_arenas = true; option java_outer_classname = "MetaGraphProtos"; option java_multiple_files = true; option java_package = "org.tensorflow.framework"; option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/protobuf"; import "google/protobuf/any.proto"; import "tensorflow/core/framework/graph.proto"; import "tensorflow/core/framework/op_def.proto"; import "tensorflow/core/framework/tensor_shape.proto"; import "tensorflow/core/framework/types.proto"; import "tensorflow/core/protobuf/saved_object_graph.proto"; import "tensorflow/core/protobuf/saver.proto"; import "tensorflow/core/protobuf/struct.proto"; // NOTE: This protocol buffer is evolving, and will go through revisions in the // coming months. // // Protocol buffer containing the following which are necessary to restart // training, run inference. It can be used to serialize/de-serialize memory // objects necessary for running computation in a graph when crossing the // process boundary. It can be used for long term storage of graphs, // cross-language execution of graphs, etc. // MetaInfoDef // GraphDef // SaverDef // CollectionDef // TensorInfo // SignatureDef message MetaGraphDef { // Meta information regarding the graph to be exported. To be used by users // of this protocol buffer to encode information regarding their meta graph. message MetaInfoDef { // User specified Version string. Can be the name of the model and revision, // steps this model has been trained to, etc. string meta_graph_version = 1; // A copy of the OpDefs used by the producer of this graph_def. // Descriptions and Ops not used in graph_def are stripped out. OpList stripped_op_list = 2; // A serialized protobuf. Can be the time this meta graph is created, or // modified, or name of the model. google.protobuf.Any any_info = 3; // User supplied tag(s) on the meta_graph and included graph_def. // // MetaGraphDefs should be tagged with their capabilities or use-cases. // Examples: "train", "serve", "gpu", "tpu", etc. // These tags enable loaders to access the MetaGraph(s) appropriate for a // specific use-case or runtime environment. repeated string tags = 4; // The __version__ string of the tensorflow build used to write this graph. // This will be populated by the framework, which will overwrite any user // supplied value. string tensorflow_version = 5; // The __git_version__ string of the tensorflow build used to write this // graph. This will be populated by the framework, which will overwrite any // user supplied value. string tensorflow_git_version = 6; // A flag to denote whether default-valued attrs have been stripped from // the nodes in this graph_def. bool stripped_default_attrs = 7; } MetaInfoDef meta_info_def = 1; // GraphDef. GraphDef graph_def = 2; // SaverDef. SaverDef saver_def = 3; // collection_def: Map from collection name to collections. // See CollectionDef section for details. map collection_def = 4; // signature_def: Map from user supplied key for a signature to a single // SignatureDef. map signature_def = 5; // Asset file def to be used with the defined graph. repeated AssetFileDef asset_file_def = 6; // Extra information about the structure of functions and stateful objects. SavedObjectGraph object_graph_def = 7; } // CollectionDef should cover most collections. // To add a user-defined collection, do one of the following: // 1. For simple data types, such as string, int, float: // tf.add_to_collection("your_collection_name", your_simple_value) // strings will be stored as bytes_list. // // 2. For Protobuf types, there are three ways to add them: // 1) tf.add_to_collection("your_collection_name", // your_proto.SerializeToString()) // // collection_def { // key: "user_defined_bytes_collection" // value { // bytes_list { // value: "queue_name: \"test_queue\"\n" // } // } // } // // or // // 2) tf.add_to_collection("your_collection_name", str(your_proto)) // // collection_def { // key: "user_defined_string_collection" // value { // bytes_list { // value: "\n\ntest_queue" // } // } // } // // or // // 3) any_buf = any_pb2.Any() // tf.add_to_collection("your_collection_name", // any_buf.Pack(your_proto)) // // collection_def { // key: "user_defined_any_collection" // value { // any_list { // value { // type_url: "type.googleapis.com/tensorflow.QueueRunnerDef" // value: "\n\ntest_queue" // } // } // } // } // // 3. For Python objects, implement to_proto() and from_proto(), and register // them in the following manner: // ops.register_proto_function("your_collection_name", // proto_type, // to_proto=YourPythonObject.to_proto, // from_proto=YourPythonObject.from_proto) // These functions will be invoked to serialize and de-serialize the // collection. For example, // ops.register_proto_function(ops.GraphKeys.GLOBAL_VARIABLES, // proto_type=variable_pb2.VariableDef, // to_proto=Variable.to_proto, // from_proto=Variable.from_proto) message CollectionDef { // NodeList is used for collecting nodes in graph. For example // collection_def { // key: "summaries" // value { // node_list { // value: "input_producer/ScalarSummary:0" // value: "shuffle_batch/ScalarSummary:0" // value: "ImageSummary:0" // } // } message NodeList { repeated string value = 1; } // BytesList is used for collecting strings and serialized protobufs. For // example: // collection_def { // key: "trainable_variables" // value { // bytes_list { // value: "\n\017conv1/weights:0\022\024conv1/weights/Assign // \032\024conv1/weights/read:0" // value: "\n\016conv1/biases:0\022\023conv1/biases/Assign\032 // \023conv1/biases/read:0" // } // } // } message BytesList { repeated bytes value = 1; } // Int64List is used for collecting int, int64 and long values. message Int64List { repeated int64 value = 1 [packed = true]; } // FloatList is used for collecting float values. message FloatList { repeated float value = 1 [packed = true]; } // AnyList is used for collecting Any protos. message AnyList { repeated google.protobuf.Any value = 1; } oneof kind { NodeList node_list = 1; BytesList bytes_list = 2; Int64List int64_list = 3; FloatList float_list = 4; AnyList any_list = 5; } } // Information about a Tensor necessary for feeding or retrieval. message TensorInfo { // For sparse tensors, The COO encoding stores a triple of values, indices, // and shape. message CooSparse { // The shape of the values Tensor is [?]. Its dtype must be the dtype of // the SparseTensor as a whole, given in the enclosing TensorInfo. string values_tensor_name = 1; // The indices Tensor must have dtype int64 and shape [?, ?]. string indices_tensor_name = 2; // The dynamic logical shape represented by the SparseTensor is recorded in // the Tensor referenced here. It must have dtype int64 and shape [?]. string dense_shape_tensor_name = 3; } // Generic encoding for composite tensors. message CompositeTensor { // The serialized TypeSpec for the composite tensor. TypeSpecProto type_spec = 1; // A TensorInfo for each flattened component tensor. repeated TensorInfo components = 2; } oneof encoding { // For dense `Tensor`s, the name of the tensor in the graph. string name = 1; // There are many possible encodings of sparse matrices // (https://en.wikipedia.org/wiki/Sparse_matrix). Currently, TensorFlow // uses only the COO encoding. This is supported and documented in the // SparseTensor Python class. CooSparse coo_sparse = 4; // Generic encoding for CompositeTensors. CompositeTensor composite_tensor = 5; } DataType dtype = 2; // The static shape should be recorded here, to the extent that it can // be known in advance. In the case of a SparseTensor, this field describes // the logical shape of the represented tensor (aka dense_shape). TensorShapeProto tensor_shape = 3; } // SignatureDef defines the signature of a computation supported by a TensorFlow // graph. // // For example, a model with two loss computations, sharing a single input, // might have the following signature_def map. // // Note that across the two SignatureDefs "loss_A" and "loss_B", the input key, // output key, and method_name are identical, and will be used by system(s) that // implement or rely upon this particular loss method. The output tensor names // differ, demonstrating how different outputs can exist for the same method. // // signature_def { // key: "loss_A" // value { // inputs { // key: "input" // value { // name: "input:0" // dtype: DT_STRING // tensor_shape: ... // } // } // outputs { // key: "loss_output" // value { // name: "loss_output_A:0" // dtype: DT_FLOAT // tensor_shape: ... // } // } // } // ... // method_name: "some/package/compute_loss" // } // signature_def { // key: "loss_B" // value { // inputs { // key: "input" // value { // name: "input:0" // dtype: DT_STRING // tensor_shape: ... // } // } // outputs { // key: "loss_output" // value { // name: "loss_output_B:0" // dtype: DT_FLOAT // tensor_shape: ... // } // } // } // ... // method_name: "some/package/compute_loss" // } message SignatureDef { // Named input parameters. map inputs = 1; // Named output parameters. map outputs = 2; // Extensible method_name information enabling third-party users to mark a // SignatureDef as supporting a particular method. This enables producers and // consumers of SignatureDefs, e.g. a model definition library and a serving // library to have a clear hand-off regarding the semantics of a computation. // // Note that multiple SignatureDefs in a single MetaGraphDef may have the same // method_name. This is commonly used to support multi-headed computation, // where a single graph computation may return multiple results. string method_name = 3; } // An asset file def for a single file or a set of sharded files with the same // name. message AssetFileDef { // The tensor to bind the asset filename to. TensorInfo tensor_info = 1; // The filename within an assets directory. Note: does not include the path // prefix, i.e. directories. For an asset at /tmp/path/vocab.txt, the filename // would be "vocab.txt". string filename = 2; }