// LINT: LEGACY_NAMES syntax = "proto3"; package stream_executor.dnn; // Specifies the data type used by an operation. enum DataType { kFloat = 0; kDouble = 1; kHalf = 2; kInt8 = 3; kInt32 = 4; } // Describes how a convolution input or output layer's data is formatted. enum DataLayout { // Naming convention: // Y <-> row or height // X <-> column or width // Batch <-> batch, or N // Depth <-> feature, or channel // TODO(timshen): turn them into cuDNN names, e.g. kNCHW. kYXDepthBatch = 0; kYXBatchDepth = 1; kBatchYXDepth = 2; // cuDNN's NHWC layout kBatchDepthYX = 3; // cuDNN's NCHW layout kBatchDepthYX4 = 4; // cuDNN's NCHW_VECT_C layout } // Describes how a convolution filter is laid out in the memory. enum FilterLayout { // Naming convention: // Y <-> row or height // X <-> column or width // Output <-> output feature, or N // Input <-> input feature, or N // TODO(timshen): turn them into cuDNN names, e.g. kNCHW. kOutputInputYX = 0; // cuDNN's NCHW layout kOutputYXInput = 1; // cuDNN's NHWC layout kOutputInputYX4 = 2; // cuDNN's NCHW_VECT_C layout kInputYXOutput = 3; kYXInputOutput = 4; } // Describes a kind of non-linearity (threshold-like mathematical function). enum ActivationMode { kNone = 0; kSigmoid = 1; // Rectified linear activation: f(x) = x < 0 ? 0 : x kRelu = 2; // Rectified linear activation; where upper maximum is 6.0. kRelu6 = 3; // Rectified linear activation; where upper maximum specified by // BatchDescriptor::value_max(). kReluX = 4; kTanh = 5; // Like ReluX; but passes all values in the range [-X,X]. kBandPass = 6; } // Describe the math definition for the conv op. The popular behavior is // actually called cross-correlation in math, despite the operation is often // referred as convolution. See cuDNN cudnnConvolutionMode_t. enum ConvolutionMode { CROSS_CORRELATION = 0; CONVOLUTION = 1; } enum ConvolutionKind { INVALID = 0; FORWARD = 1; BACKWARD_FILTER = 2; BACKWARD_DATA = 3; FORWARD_BIAS_ACTIVATION = 4; } // Generic tensor representation. message TensorDescriptorProto { repeated int64 dimensions = 1; DataType data_type = 2; oneof layout_oneof { DataLayout data_layout = 3; FilterLayout filter_layout = 4; } } // Generic algorithm representation. message AlgorithmProto { enum MathType { DEFAULT_MATH = 0; // The GPU may operate 4x4 matrix FMA. // See cuDNN's documentation for CUDNN_TENSOR_OP_MATH. TENSOR_OP_MATH = 1; } int64 algo_id = 1; MathType math_type = 2; } // Convolution-specific parameters. message ConvolutionDescriptorProto { repeated int64 paddings = 1; repeated int64 strides = 2; repeated int64 dilations = 3; // The "accumulator" type. For example, use F32 as an accumulator for F16 // convolutions. // See cuDNN's cudnnConvolutionMode_t. DataType compute_mode = 4; // See cuDNN's group count. int32 group_count = 5; ConvolutionMode convolution_mode = 6; // Tensorflow node name, same as in NodeDef, for debugging purposes. string name = 7; }