use rand::random; use tfhe_ntt::prime32::Plan; fn main() { // define suitable NTT prime and polynomial size let p: u32 = 1073479681; let polynomial_size = 1024; // unwrapping is fine here because we know roots of unity exist for the combination // `(polynomial_size, p)` let lhs_poly: Vec = (0..polynomial_size).map(|_| random::() % p).collect(); let rhs_poly: Vec = (0..polynomial_size).map(|_| random::() % p).collect(); // method 1: schoolbook algorithm let add = |x: u32, y: u32| ((x as u64 + y as u64) % p as u64) as u32; let sub = |x: u32, y: u32| add(x, p - y); let mul = |x: u32, y: u32| ((x as u64 * y as u64) % p as u64) as u32; let mut full_convolution = vec![0; 2 * polynomial_size]; for i in 0..polynomial_size { for j in 0..polynomial_size { full_convolution[i + j] = add(full_convolution[i + j], mul(lhs_poly[i], rhs_poly[j])); } } let mut negacyclic_convolution = vec![0; polynomial_size]; for i in 0..polynomial_size { negacyclic_convolution[i] = sub(full_convolution[i], full_convolution[polynomial_size + i]); } // method 2: NTT let plan = Plan::try_new(polynomial_size, p).unwrap(); let mut lhs_ntt = lhs_poly; let mut rhs_ntt = rhs_poly; // convert to NTT domain plan.fwd(&mut lhs_ntt); plan.fwd(&mut rhs_ntt); // perform elementwise multiplication and normalize (result is stored in `lhs_ntt`) plan.mul_assign_normalize(&mut lhs_ntt, &rhs_ntt); // convert back to standard domain plan.inv(&mut lhs_ntt); // check that method 1 and method 2 give the same result assert_eq!(lhs_ntt, negacyclic_convolution); println!("Success!"); }