/** * @file reading_incomplete.cc * * @section LICENSE * * The MIT License * * @copyright Copyright (c) 2018-2020 TileDB, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @section DESCRIPTION * * This example demonstrates the concept of incomplete read queries * for a sparse array with two attributes. */ #include #include using namespace tiledb; // Name of array. std::string array_name("reading_incomplete_array"); void create_array() { // Create a TileDB context. Context ctx; // Create domain. Domain domain(ctx); domain.add_dimension(Dimension::create(ctx, "rows", {{1, 4}}, 2)) .add_dimension(Dimension::create(ctx, "cols", {{1, 4}}, 2)); // The array will be sparse. ArraySchema schema(ctx, TILEDB_SPARSE); schema.set_domain(domain).set_order({{TILEDB_ROW_MAJOR, TILEDB_ROW_MAJOR}}); // Add two attributes "a1" and "a2", the first integer and the second string schema.add_attribute(Attribute::create(ctx, "a1")); schema.add_attribute(Attribute::create(ctx, "a2")); // Create the (empty) array on disk. Array::create(array_name, schema); } void write_array() { Context ctx; // Prepare some data for the array std::vector coords_rows = {1, 2, 2}; std::vector coords_cols = {1, 1, 2}; std::vector a1_data = {1, 2, 3}; std::string a2_data = "abbccc"; std::vector a2_off = {0, 1, 3}; // Open the array for writing and create the query. Array array(ctx, array_name, TILEDB_WRITE); Query query(ctx, array); query.set_layout(TILEDB_GLOBAL_ORDER) .set_buffer("a1", a1_data) .set_buffer("a2", a2_off, a2_data) .set_buffer("rows", coords_rows) .set_buffer("cols", coords_cols); // Perform the write and close the array. query.submit(); query.finalize(); array.close(); } void reallocate_buffers( std::vector* coords_rows, std::vector* coords_cols, std::vector* a1_data, std::vector* a2_off, std::string* a2_data) { std::cout << "Reallocating...\n"; // Note: this is a naive reallocation - you should handle // reallocation properly depending on your application coords_rows->resize(2 * coords_rows->size()); coords_cols->resize(2 * coords_cols->size()); a1_data->resize(2 * a1_data->size()); a2_off->resize(2 * a2_off->size()); a2_data->resize(2 * a2_data->size()); } void print_results( const std::vector& coords_rows, const std::vector& coords_cols, const std::vector& a1_data, const std::vector& a2_off, const std::string& a2_data, const std::unordered_map>& result_el_map) { std::cout << "Printing results...\n"; // Get the string sizes auto result_el_a2_off = result_el_map.find("a2")->second.first; std::vector a2_str_sizes; for (size_t i = 0; i < result_el_a2_off - 1; ++i) a2_str_sizes.push_back(a2_off[i + 1] - a2_off[i]); auto result_a2_data_size = result_el_map.find("a2")->second.second * sizeof(char); a2_str_sizes.push_back(result_a2_data_size - a2_off[result_el_a2_off - 1]); // Get the strings std::vector a2_str; for (size_t i = 0; i < result_el_a2_off; ++i) a2_str.push_back(std::string(&a2_data[a2_off[i]], a2_str_sizes[i])); // Print the results auto result_num = result_el_a2_off; // For clarity for (size_t r = 0; r < result_num; ++r) { int i = coords_rows[r]; int j = coords_cols[r]; int a1 = a1_data[r]; std::cout << "Cell (" << i << ", " << j << "), a1: " << a1 << ", a2: " << a2_str[r] << "\n"; } } void read_array() { Context ctx; // Prepare the array for reading Array array(ctx, array_name, TILEDB_READ); // Read entire array const std::vector subarray = {1, 4, 1, 4}; // Prepare buffers such that the results **cannot** fit std::vector coords_rows(1); std::vector coords_cols(1); std::vector a1_data(1); std::vector a2_off(1); std::string a2_data; a2_data.resize(1); // Prepare the query Query query(ctx, array); query.set_subarray(subarray) .set_layout(TILEDB_ROW_MAJOR) .set_buffer("a1", a1_data) .set_buffer("a2", a2_off, a2_data) .set_buffer("rows", coords_rows) .set_buffer("cols", coords_cols); // Create a loop Query::Status status; do { // Submit query and get status query.submit(); status = query.query_status(); // If any results were retrieved, parse and print them auto result_num = (int)query.result_buffer_elements()["a1"].second; if (status == Query::Status::INCOMPLETE && result_num == 0) { // VERY IMPORTANT!! reallocate_buffers( &coords_rows, &coords_cols, &a1_data, &a2_off, &a2_data); query.set_buffer("a1", a1_data) .set_buffer("a2", a2_off, a2_data) .set_buffer("rows", coords_rows) .set_buffer("cols", coords_cols); } else if (result_num > 0) { print_results( coords_rows, coords_cols, a1_data, a2_off, a2_data, query.result_buffer_elements()); } } while (status == Query::Status::INCOMPLETE); // Handle error if (status == Query::Status::FAILED) { std::cout << "Error in reading\n"; return; } // Close the array array.close(); } int main() { Context ctx; if (Object::object(ctx, array_name).type() != Object::Type::Array) { create_array(); write_array(); } read_array(); return 0; }