/** * @file variable_length.cc * * @section LICENSE * * The MIT License * * @copyright Copyright (c) 2018-2020 TileDB, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @section DESCRIPTION * * When run, this program will create a simple 2D dense array with two * variable-length attributes, write some data to it, and read a slice of the * data back on both attributes. */ #include #include using namespace tiledb; // Name of array. std::string array_name("variable_length_array"); void create_array() { // Create a TileDB context Context ctx; // The array will be 4x4 with dimensions "rows" and "cols", with domain [1,4] Domain domain(ctx); domain.add_dimension(Dimension::create(ctx, "rows", {{1, 4}}, 4)) .add_dimension(Dimension::create(ctx, "cols", {{1, 4}}, 4)); // The array will be dense ArraySchema schema(ctx, TILEDB_DENSE); schema.set_domain(domain).set_order({{TILEDB_ROW_MAJOR, TILEDB_ROW_MAJOR}}); // Add two variable-length attributes "a1" and "a2", the first storing // strings and the second storing a variable number of integers. schema.add_attribute(Attribute::create(ctx, "a1")); schema.add_attribute(Attribute::create>(ctx, "a2")); // Create the (empty) array on disk. Array::create(array_name, schema); } void write_array() { Context ctx; // Prepare some data for the array std::string a1_data = "abbcccddeeefghhhijjjkklmnoop"; std::vector a1_off = { 0, 1, 3, 6, 8, 11, 12, 13, 16, 17, 20, 22, 23, 24, 25, 27}; std::vector a2_data = {1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 11, 12, 12, 13, 14, 14, 14, 15, 16}; std::vector a2_el_off = { 0, 2, 4, 5, 6, 7, 9, 11, 14, 16, 17, 18, 20, 21, 24, 25}; std::vector a2_off; for (auto e : a2_el_off) a2_off.push_back(e * sizeof(int)); // Open the array for writing and create the query Array array(ctx, array_name, TILEDB_WRITE); Query query(ctx, array); query.set_layout(TILEDB_ROW_MAJOR) .set_buffer("a1", a1_off, a1_data) .set_buffer("a2", a2_off, a2_data); // Perform the write and close the array. query.submit(); array.close(); } void read_array() { Context ctx; // Prepare the array for reading Array array(ctx, array_name, TILEDB_READ); // Slice only rows 1, 2 and cols 2, 3, 4 const std::vector subarray = {1, 2, 2, 4}; // Prepare the vectors that will hold the result std::vector a1_off(12); std::string a1_data; a1_data.resize(9); std::vector a2_off(12); std::vector a2_data(32); // Prepare and submit the query, and close the array Query query(ctx, array); query.set_subarray(subarray) .set_layout(TILEDB_ROW_MAJOR) .set_buffer("a1", a1_off, a1_data) .set_buffer("a2", a2_off, a2_data); query.submit(); array.close(); // Get the string sizes auto result_el_map = query.result_buffer_elements(); auto result_el_a1_off = result_el_map["a1"].first; std::vector a1_str_sizes; for (size_t i = 0; i < result_el_a1_off - 1; ++i) a1_str_sizes.push_back(a1_off[i + 1] - a1_off[i]); auto result_a1_data_size = result_el_map["a1"].second * sizeof(char); a1_str_sizes.push_back(result_a1_data_size - a1_off[result_el_a1_off - 1]); // Get the strings std::vector a1_str; for (size_t i = 0; i < result_el_a1_off; ++i) a1_str.push_back(std::string(&a1_data[a1_off[i]], a1_str_sizes[i])); // Get the element offsets std::vector a2_el_off; auto result_el_a2_off = result_el_map["a2"].first; for (size_t i = 0; i < result_el_a2_off; ++i) a2_el_off.push_back(a2_off[i] / sizeof(int)); // Get the number of elements per cell value std::vector a2_cell_el; for (size_t i = 0; i < result_el_a2_off - 1; ++i) a2_cell_el.push_back(a2_el_off[i + 1] - a2_el_off[i]); auto result_el_a2_data = result_el_map["a2"].second; a2_cell_el.push_back(result_el_a2_data - a2_el_off.back()); // Print the results for (size_t i = 0; i < result_el_a1_off; ++i) { std::cout << "a1: " << a1_str[i] << ", a2: "; for (size_t j = 0; j < a2_cell_el[i]; ++j) std::cout << a2_data[a2_el_off[i] + j] << " "; std::cout << "\n"; } } int main() { Context ctx; if (Object::object(ctx, array_name).type() != Object::Type::Array) { create_array(); write_array(); } read_array(); return 0; }