/** * @file writing_dense_global_expansion.cc * * @section LICENSE * * The MIT License * * @copyright Copyright (c) 2018-2020 TileDB, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * @section DESCRIPTION * * When run, this program will create a simple 2D dense array, write some data * to it in global layout, and read the entire array data back. Here we show * how to handle the case where some tile extent does not divide the respective * dimension domain (and, hence, internal domain expansion occurs). */ #include #include using namespace tiledb; // Name of array. std::string array_name("writing_dense_global_expansion_array"); void create_array() { // Create a TileDB context. Context ctx; // The array will be 4x3 with dimensions "rows" and "cols", // and space tiles 2x2 Domain domain(ctx); domain.add_dimension(Dimension::create(ctx, "rows", {{1, 4}}, 2)) .add_dimension(Dimension::create(ctx, "cols", {{1, 3}}, 2)); // The array will be dense. ArraySchema schema(ctx, TILEDB_DENSE); schema.set_domain(domain).set_order({{TILEDB_ROW_MAJOR, TILEDB_ROW_MAJOR}}); // Add a single attribute "a" so each (i,j) cell can store an integer. schema.add_attribute(Attribute::create(ctx, "a")); // Create the (empty) array on disk. Array::create(array_name, schema); } void write_array_global() { std::vector subarray = {1, 4, 1, 2}; Context ctx; Array array(ctx, array_name, TILEDB_WRITE); Query query(ctx, array); std::vector data = {1, 2, 3, 4, 5, 6, 7, 8}; query.set_layout(TILEDB_GLOBAL_ORDER) .set_buffer("a", data) .set_subarray(subarray); query.submit(); query.finalize(); array.close(); } void write_array_row_major() { std::vector subarray = {1, 4, 3, 3}; Context ctx; Array array(ctx, array_name, TILEDB_WRITE); Query query(ctx, array); std::vector data = {9, 10, 11, 12}; query.set_layout(TILEDB_ROW_MAJOR) .set_buffer("a", data) .set_subarray(subarray); query.submit(); array.close(); } void read_array() { Context ctx; // Prepare the array for reading Array array(ctx, array_name, TILEDB_READ); // Read the entire array const std::vector subarray = {1, 4, 1, 3}; // Prepare the vector that will hold the result (of size 12 elements) std::vector data(12); // Prepare the query Query query(ctx, array); query.set_subarray(subarray) .set_layout(TILEDB_ROW_MAJOR) .set_buffer("a", data); // Submit the query and close the array. query.submit(); array.close(); // Print out the results. for (auto d : data) std::cout << d << "\n"; } int main() { Context ctx; if (Object::object(ctx, array_name).type() != Object::Type::Array) { create_array(); write_array_global(); write_array_row_major(); } read_array(); return 0; }