use tokenizers::models::bpe::{BpeTrainerBuilder, BPE}; use tokenizers::normalizers::{Sequence, Strip, NFC}; use tokenizers::pre_tokenizers::byte_level::ByteLevel; use tokenizers::{AddedToken, TokenizerBuilder}; use tokenizers::{DecoderWrapper, NormalizerWrapper, PostProcessorWrapper, PreTokenizerWrapper}; use tokenizers::{Tokenizer, TokenizerImpl}; #[test] fn train_tokenizer() { let vocab_size: usize = 100; let mut tokenizer = TokenizerBuilder::new() .with_model(BPE::default()) .with_normalizer(Some(Sequence::new(vec![ Strip::new(true, true).into(), NFC.into(), ]))) .with_pre_tokenizer(Some(ByteLevel::default())) .with_post_processor(Some(ByteLevel::default())) .with_decoder(Some(ByteLevel::default())) .build() .unwrap(); let mut trainer = BpeTrainerBuilder::new() .show_progress(false) .vocab_size(vocab_size) .min_frequency(0) .special_tokens(vec![ AddedToken::from(String::from(""), true), AddedToken::from(String::from(""), true), AddedToken::from(String::from(""), true), AddedToken::from(String::from(""), true), AddedToken::from(String::from(""), true), ]) .build(); let pretty = true; tokenizer .train_from_files(&mut trainer, vec!["data/small.txt".to_string()]) .unwrap() .save("data/tokenizer.json", pretty) .unwrap(); } #[test] fn load_tokenizer() { let tokenizer = Tokenizer::from_file("data/roberta.json").unwrap(); let example = "This is an example"; let ids = vec![713, 16, 41, 1246]; let tokens = vec!["This", "ฤ is", "ฤ an", "ฤ example"]; let encodings = tokenizer.encode(example, false).unwrap(); assert_eq!(encodings.get_ids(), ids); assert_eq!(encodings.get_tokens(), tokens); let decoded = tokenizer.decode(&ids, false).unwrap(); assert_eq!(decoded, example); } #[test] #[ignore] fn quicktour_slow_train() -> tokenizers::Result<()> { // START quicktour_init_tokenizer use tokenizers::models::bpe::BPE; let mut tokenizer: TokenizerImpl< BPE, NormalizerWrapper, PreTokenizerWrapper, PostProcessorWrapper, DecoderWrapper, > = TokenizerImpl::new( BPE::builder() .unk_token("[UNK]".to_string()) .build() .unwrap(), ); // END quicktour_init_tokenizer // START quicktour_init_trainer use tokenizers::models::bpe::BpeTrainer; let mut trainer = BpeTrainer::builder() .special_tokens(vec![ AddedToken::from("[UNK]", true), AddedToken::from("[CLS]", true), AddedToken::from("[SEP]", true), AddedToken::from("[PAD]", true), AddedToken::from("[MASK]", true), ]) .build(); // END quicktour_init_trainer // START quicktour_init_pretok use tokenizers::pre_tokenizers::whitespace::Whitespace; tokenizer.with_pre_tokenizer(Some(Whitespace {})); // END quicktour_init_pretok // START quicktour_train let files = vec![ "data/wikitext-103-raw/wiki.train.raw".into(), "data/wikitext-103-raw/wiki.test.raw".into(), "data/wikitext-103-raw/wiki.valid.raw".into(), ]; tokenizer.train_from_files(&mut trainer, files)?; // END quicktour_train // START quicktour_save tokenizer.save("data/tokenizer-wiki.json", false)?; // END quicktour_save Ok(()) } #[test] fn quicktour() -> tokenizers::Result<()> { // START quicktour_reload_tokenizer let mut tokenizer = Tokenizer::from_file("data/tokenizer-wiki.json")?; // END quicktour_reload_tokenizer // START quicktour_encode let output = tokenizer.encode("Hello, y'all! How are you ๐Ÿ˜ ?", true)?; // END quicktour_encode // START quicktour_print_tokens println!("{:?}", output.get_tokens()); // ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?",] // END quicktour_print_tokens assert_eq!( output.get_tokens(), ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?",] ); // START quicktour_print_ids println!("{:?}", output.get_ids()); // [27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35] // END quicktour_print_ids assert_eq!( output.get_ids(), [27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35] ); // START quicktour_print_offsets println!("{:?}", output.get_offsets()[9]); // (26, 30) // END quicktour_print_offsets assert_eq!(output.get_offsets()[9], (26, 30)); // START quicktour_use_offsets let sentence = "Hello, y'all! How are you ๐Ÿ˜ ?"; println!("{}", &sentence[26..30]); // "๐Ÿ˜" // END quicktour_use_offsets // START quicktour_check_sep println!("{}", tokenizer.token_to_id("[SEP]").unwrap()); // 2 // END quicktour_check_sep assert_eq!(tokenizer.token_to_id("[SEP]"), Some(2)); // START quicktour_init_template_processing use tokenizers::processors::template::TemplateProcessing; let special_tokens = vec![ ("[CLS]", tokenizer.token_to_id("[CLS]").unwrap()), ("[SEP]", tokenizer.token_to_id("[SEP]").unwrap()), ]; tokenizer.with_post_processor(Some( TemplateProcessing::builder() .try_single("[CLS] $A [SEP]") .unwrap() .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1") .unwrap() .special_tokens(special_tokens) .build()?, )); // END quicktour_init_template_processing // START quicktour_print_special_tokens let output = tokenizer.encode("Hello, y'all! How are you ๐Ÿ˜ ?", true)?; println!("{:?}", output.get_tokens()); // ["[CLS]", "Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?", "[SEP]"] // END quicktour_print_special_tokens assert_eq!( output.get_tokens(), ["[CLS]", "Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?", "[SEP]"] ); // START quicktour_print_special_tokens_pair let output = tokenizer.encode(("Hello, y'all!", "How are you ๐Ÿ˜ ?"), true)?; println!("{:?}", output.get_tokens()); // ["[CLS]", "Hello", ",", "y", "'", "all", "!", "[SEP]", "How", "are", "you", "[UNK]", "?", "[SEP]"] // END quicktour_print_special_tokens_pair assert_eq!( output.get_tokens(), [ "[CLS]", "Hello", ",", "y", "'", "all", "!", "[SEP]", "How", "are", "you", "[UNK]", "?", "[SEP]" ] ); // START quicktour_print_type_ids println!("{:?}", output.get_type_ids()); // [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] // END quicktour_print_type_ids assert_eq!( output.get_type_ids(), [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] ); // START quicktour_encode_batch let output = tokenizer.encode_batch(vec!["Hello, y'all!", "How are you ๐Ÿ˜ ?"], true)?; // END quicktour_encode_batch println!("{output:?}"); // START quicktour_encode_batch_pair let output = tokenizer.encode_batch( vec![ ("Hello, y'all!", "How are you ๐Ÿ˜ ?"), ("Hello to you too!", "I'm fine, thank you!"), ], true, )?; // END quicktour_encode_batch_pair println!("{output:?}"); // START quicktour_enable_padding use tokenizers::PaddingParams; tokenizer.with_padding(Some(PaddingParams { pad_id: 3, pad_token: "[PAD]".to_string(), ..PaddingParams::default() })); // END quicktour_enable_padding // START quicktour_print_batch_tokens let output = tokenizer.encode_batch(vec!["Hello, y'all!", "How are you ๐Ÿ˜ ?"], true)?; println!("{:?}", output[1].get_tokens()); // ["[CLS]", "How", "are", "you", "[UNK]", "?", "[SEP]", "[PAD]"] // END quicktour_print_batch_tokens assert_eq!( output[1].get_tokens(), ["[CLS]", "How", "are", "you", "[UNK]", "?", "[SEP]", "[PAD]"] ); // START quicktour_print_attention_mask println!("{:?}", output[1].get_attention_mask()); // [1, 1, 1, 1, 1, 1, 1, 0] // END quicktour_print_attention_mask assert_eq!(output[1].get_attention_mask(), [1, 1, 1, 1, 1, 1, 1, 0]); Ok(()) } #[test] fn pipeline() -> tokenizers::Result<()> { // START pipeline_reload_tokenizer use tokenizers::Tokenizer; let mut tokenizer = Tokenizer::from_file("data/tokenizer-wiki.json")?; // END pipeline_reload_tokenizer // START pipeline_setup_normalizer use tokenizers::normalizers::{ strip::StripAccents, unicode::NFD, utils::Sequence as NormalizerSequence, }; let normalizer = NormalizerSequence::new(vec![NFD.into(), StripAccents.into()]); // END pipeline_setup_normalizer // START pipeline_test_normalizer use tokenizers::{NormalizedString, Normalizer}; let mut normalized = NormalizedString::from("Hรฉllรฒ hรดw are รผ?"); normalizer.normalize(&mut normalized)?; println!("{}", normalized.get()); // "Hello how are u?" // END pipeline_test_normalizer assert_eq!(normalized.get(), "Hello how are u?"); // START pipeline_replace_normalizer tokenizer.with_normalizer(Some(normalizer)); // END pipeline_replace_normalizer // START pipeline_setup_pre_tokenizer use tokenizers::pre_tokenizers::whitespace::Whitespace; use tokenizers::{OffsetReferential, OffsetType, PreTokenizedString, PreTokenizer}; let pre_tokenizer = Whitespace {}; let mut pre_tokenized = PreTokenizedString::from("Hello! How are you? I'm fine, thank you."); pre_tokenizer.pre_tokenize(&mut pre_tokenized)?; println!( "{:?}", pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte) ); // [("Hello", (0, 5), None), ("!", (5, 6), None), ("How", (7, 10), None), // ("are", (11, 14), None), ("you", (15, 18), None), ("?", (18, 19), None), // ("I", (20, 21), None), ("\'", (21, 22), None), ("m", (22, 23), None), // ("fine", (24, 28), None), (",", (28, 29), None), ("thank", (30, 35), None), // ("you", (36, 39), None), (".", (39, 40), None)] // END pipeline_setup_pre_tokenizer assert_eq!( pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte), vec![ ("Hello", (0, 5), &None), ("!", (5, 6), &None), ("How", (7, 10), &None), ("are", (11, 14), &None), ("you", (15, 18), &None), ("?", (18, 19), &None), ("I", (20, 21), &None), ("\'", (21, 22), &None), ("m", (22, 23), &None), ("fine", (24, 28), &None), (",", (28, 29), &None), ("thank", (30, 35), &None), ("you", (36, 39), &None), (".", (39, 40), &None) ] ); // START pipeline_combine_pre_tokenizer use tokenizers::pre_tokenizers::{digits::Digits, sequence::Sequence}; let pre_tokenizer = Sequence::new(vec![Whitespace {}.into(), Digits::new(true).into()]); let mut pre_tokenized = PreTokenizedString::from("Call 911!"); pre_tokenizer.pre_tokenize(&mut pre_tokenized)?; println!( "{:?}", pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte) ); // END pipeline_combine_pre_tokenizer assert_eq!( pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte), vec![ ("Call", (0, 4), &None), ("9", (5, 6), &None), ("1", (6, 7), &None), ("1", (7, 8), &None), ("!", (8, 9), &None) ] ); // START pipeline_replace_pre_tokenizer tokenizer.with_pre_tokenizer(Some(pre_tokenizer)); // END pipeline_replace_pre_tokenizer // START pipeline_setup_processor use tokenizers::processors::template::TemplateProcessing; tokenizer.with_post_processor(Some( TemplateProcessing::builder() .try_single("[CLS] $A [SEP]") .unwrap() .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1") .unwrap() .special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)]) .build() .unwrap(), )); // END pipeline_setup_processor // START pipeline_test_decoding let output = tokenizer.encode("Hello, y'all! How are you ๐Ÿ˜ ?", true)?; println!("{:?}", output.get_ids()); // [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2] let decoded = tokenizer.decode( &[1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2], true, )?; println!("{decoded}"); // "Hello , y ' all ! How are you ?" // END pipeline_test_decoding Ok(()) } #[test] #[ignore] fn train_pipeline_bert() -> tokenizers::Result<()> { // START bert_setup_tokenizer use tokenizers::models::wordpiece::WordPiece; use tokenizers::Tokenizer; let mut bert_tokenizer = Tokenizer::new( WordPiece::builder() .unk_token("[UNK]".to_string()) .build() .unwrap(), ); // END bert_setup_tokenizer // START bert_setup_normalizer use tokenizers::normalizers::utils::Sequence as NormalizerSequence; use tokenizers::normalizers::{strip::StripAccents, unicode::NFD, utils::Lowercase}; bert_tokenizer.with_normalizer(Some(NormalizerSequence::new(vec![ NFD.into(), Lowercase.into(), StripAccents.into(), ]))); // END bert_setup_normalizer // START bert_setup_pre_tokenizer use tokenizers::pre_tokenizers::whitespace::Whitespace; bert_tokenizer.with_pre_tokenizer(Some(Whitespace {})); // END bert_setup_pre_tokenizer // START bert_setup_processor use tokenizers::processors::template::TemplateProcessing; bert_tokenizer.with_post_processor(Some( TemplateProcessing::builder() .try_single("[CLS] $A [SEP]") .unwrap() .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1") .unwrap() .special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)]) .build() .unwrap(), )); // END bert_setup_processor // START bert_train_tokenizer use tokenizers::models::{wordpiece::WordPieceTrainer, TrainerWrapper}; let mut trainer: TrainerWrapper = WordPieceTrainer::builder() .vocab_size(30_522) .special_tokens(vec![ AddedToken::from("[UNK]", true), AddedToken::from("[CLS]", true), AddedToken::from("[SEP]", true), AddedToken::from("[PAD]", true), AddedToken::from("[MASK]", true), ]) .build() .into(); let files = vec![ "data/wikitext-103-raw/wiki.train.raw".into(), "data/wikitext-103-raw/wiki.test.raw".into(), "data/wikitext-103-raw/wiki.valid.raw".into(), ]; bert_tokenizer.train_from_files(&mut trainer, files)?; bert_tokenizer.save("data/bert-wiki.json", false)?; // END bert_train_tokenizer Ok(()) } #[test] fn pipeline_bert() -> tokenizers::Result<()> { let mut bert_tokenizer = Tokenizer::from_file("data/bert-wiki.json")?; // START bert_test_decoding let output = bert_tokenizer.encode("Welcome to the ๐Ÿค— Tokenizers library.", true)?; println!("{:?}", output.get_tokens()); // ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"] let decoded = bert_tokenizer.decode(output.get_ids(), true)?; println!("{decoded}"); // "welcome to the tok ##eni ##zer ##s library ." // END bert_test_decoding assert_eq!( output.get_tokens(), &[ "[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]" ] ); assert_eq!(decoded, "welcome to the tok ##eni ##zer ##s library ."); // START bert_proper_decoding use tokenizers::decoders::wordpiece::WordPiece as WordPieceDecoder; bert_tokenizer.with_decoder(Some(WordPieceDecoder::default())); let decoded = bert_tokenizer.decode(output.get_ids(), true)?; // "welcome to the tokenizers library." // END bert_proper_decoding assert_eq!(decoded, "welcome to the tokenizers library."); Ok(()) }