use tokenizers::models::bpe::{BpeTrainerBuilder, BPE};
use tokenizers::normalizers::{Sequence, Strip, NFC};
use tokenizers::pre_tokenizers::byte_level::ByteLevel;
use tokenizers::{AddedToken, TokenizerBuilder};
use tokenizers::{DecoderWrapper, NormalizerWrapper, PostProcessorWrapper, PreTokenizerWrapper};
use tokenizers::{Tokenizer, TokenizerImpl};
#[test]
fn train_tokenizer() {
let vocab_size: usize = 100;
let mut tokenizer = TokenizerBuilder::new()
.with_model(BPE::default())
.with_normalizer(Some(Sequence::new(vec![
Strip::new(true, true).into(),
NFC.into(),
])))
.with_pre_tokenizer(Some(ByteLevel::default()))
.with_post_processor(Some(ByteLevel::default()))
.with_decoder(Some(ByteLevel::default()))
.build()
.unwrap();
let mut trainer = BpeTrainerBuilder::new()
.show_progress(false)
.vocab_size(vocab_size)
.min_frequency(0)
.special_tokens(vec![
AddedToken::from(String::from(""), true),
AddedToken::from(String::from(""), true),
AddedToken::from(String::from(""), true),
AddedToken::from(String::from(""), true),
AddedToken::from(String::from(""), true),
])
.build();
let pretty = true;
tokenizer
.train_from_files(&mut trainer, vec!["data/small.txt".to_string()])
.unwrap()
.save("data/tokenizer.json", pretty)
.unwrap();
}
#[test]
fn load_tokenizer() {
let tokenizer = Tokenizer::from_file("data/roberta.json").unwrap();
let example = "This is an example";
let ids = vec![713, 16, 41, 1246];
let tokens = vec!["This", "ฤ is", "ฤ an", "ฤ example"];
let encodings = tokenizer.encode(example, false).unwrap();
assert_eq!(encodings.get_ids(), ids);
assert_eq!(encodings.get_tokens(), tokens);
let decoded = tokenizer.decode(&ids, false).unwrap();
assert_eq!(decoded, example);
}
#[test]
#[ignore]
fn quicktour_slow_train() -> tokenizers::Result<()> {
// START quicktour_init_tokenizer
use tokenizers::models::bpe::BPE;
let mut tokenizer: TokenizerImpl<
BPE,
NormalizerWrapper,
PreTokenizerWrapper,
PostProcessorWrapper,
DecoderWrapper,
> = TokenizerImpl::new(
BPE::builder()
.unk_token("[UNK]".to_string())
.build()
.unwrap(),
);
// END quicktour_init_tokenizer
// START quicktour_init_trainer
use tokenizers::models::bpe::BpeTrainer;
let mut trainer = BpeTrainer::builder()
.special_tokens(vec![
AddedToken::from("[UNK]", true),
AddedToken::from("[CLS]", true),
AddedToken::from("[SEP]", true),
AddedToken::from("[PAD]", true),
AddedToken::from("[MASK]", true),
])
.build();
// END quicktour_init_trainer
// START quicktour_init_pretok
use tokenizers::pre_tokenizers::whitespace::Whitespace;
tokenizer.with_pre_tokenizer(Some(Whitespace {}));
// END quicktour_init_pretok
// START quicktour_train
let files = vec![
"data/wikitext-103-raw/wiki.train.raw".into(),
"data/wikitext-103-raw/wiki.test.raw".into(),
"data/wikitext-103-raw/wiki.valid.raw".into(),
];
tokenizer.train_from_files(&mut trainer, files)?;
// END quicktour_train
// START quicktour_save
tokenizer.save("data/tokenizer-wiki.json", false)?;
// END quicktour_save
Ok(())
}
#[test]
fn quicktour() -> tokenizers::Result<()> {
// START quicktour_reload_tokenizer
let mut tokenizer = Tokenizer::from_file("data/tokenizer-wiki.json")?;
// END quicktour_reload_tokenizer
// START quicktour_encode
let output = tokenizer.encode("Hello, y'all! How are you ๐ ?", true)?;
// END quicktour_encode
// START quicktour_print_tokens
println!("{:?}", output.get_tokens());
// ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?",]
// END quicktour_print_tokens
assert_eq!(
output.get_tokens(),
["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?",]
);
// START quicktour_print_ids
println!("{:?}", output.get_ids());
// [27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35]
// END quicktour_print_ids
assert_eq!(
output.get_ids(),
[27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35]
);
// START quicktour_print_offsets
println!("{:?}", output.get_offsets()[9]);
// (26, 30)
// END quicktour_print_offsets
assert_eq!(output.get_offsets()[9], (26, 30));
// START quicktour_use_offsets
let sentence = "Hello, y'all! How are you ๐ ?";
println!("{}", &sentence[26..30]);
// "๐"
// END quicktour_use_offsets
// START quicktour_check_sep
println!("{}", tokenizer.token_to_id("[SEP]").unwrap());
// 2
// END quicktour_check_sep
assert_eq!(tokenizer.token_to_id("[SEP]"), Some(2));
// START quicktour_init_template_processing
use tokenizers::processors::template::TemplateProcessing;
let special_tokens = vec![
("[CLS]", tokenizer.token_to_id("[CLS]").unwrap()),
("[SEP]", tokenizer.token_to_id("[SEP]").unwrap()),
];
tokenizer.with_post_processor(Some(
TemplateProcessing::builder()
.try_single("[CLS] $A [SEP]")
.unwrap()
.try_pair("[CLS] $A [SEP] $B:1 [SEP]:1")
.unwrap()
.special_tokens(special_tokens)
.build()?,
));
// END quicktour_init_template_processing
// START quicktour_print_special_tokens
let output = tokenizer.encode("Hello, y'all! How are you ๐ ?", true)?;
println!("{:?}", output.get_tokens());
// ["[CLS]", "Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?", "[SEP]"]
// END quicktour_print_special_tokens
assert_eq!(
output.get_tokens(),
["[CLS]", "Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?", "[SEP]"]
);
// START quicktour_print_special_tokens_pair
let output = tokenizer.encode(("Hello, y'all!", "How are you ๐ ?"), true)?;
println!("{:?}", output.get_tokens());
// ["[CLS]", "Hello", ",", "y", "'", "all", "!", "[SEP]", "How", "are", "you", "[UNK]", "?", "[SEP]"]
// END quicktour_print_special_tokens_pair
assert_eq!(
output.get_tokens(),
[
"[CLS]", "Hello", ",", "y", "'", "all", "!", "[SEP]", "How", "are", "you", "[UNK]",
"?", "[SEP]"
]
);
// START quicktour_print_type_ids
println!("{:?}", output.get_type_ids());
// [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
// END quicktour_print_type_ids
assert_eq!(
output.get_type_ids(),
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
);
// START quicktour_encode_batch
let output = tokenizer.encode_batch(vec!["Hello, y'all!", "How are you ๐ ?"], true)?;
// END quicktour_encode_batch
println!("{output:?}");
// START quicktour_encode_batch_pair
let output = tokenizer.encode_batch(
vec![
("Hello, y'all!", "How are you ๐ ?"),
("Hello to you too!", "I'm fine, thank you!"),
],
true,
)?;
// END quicktour_encode_batch_pair
println!("{output:?}");
// START quicktour_enable_padding
use tokenizers::PaddingParams;
tokenizer.with_padding(Some(PaddingParams {
pad_id: 3,
pad_token: "[PAD]".to_string(),
..PaddingParams::default()
}));
// END quicktour_enable_padding
// START quicktour_print_batch_tokens
let output = tokenizer.encode_batch(vec!["Hello, y'all!", "How are you ๐ ?"], true)?;
println!("{:?}", output[1].get_tokens());
// ["[CLS]", "How", "are", "you", "[UNK]", "?", "[SEP]", "[PAD]"]
// END quicktour_print_batch_tokens
assert_eq!(
output[1].get_tokens(),
["[CLS]", "How", "are", "you", "[UNK]", "?", "[SEP]", "[PAD]"]
);
// START quicktour_print_attention_mask
println!("{:?}", output[1].get_attention_mask());
// [1, 1, 1, 1, 1, 1, 1, 0]
// END quicktour_print_attention_mask
assert_eq!(output[1].get_attention_mask(), [1, 1, 1, 1, 1, 1, 1, 0]);
Ok(())
}
#[test]
fn pipeline() -> tokenizers::Result<()> {
// START pipeline_reload_tokenizer
use tokenizers::Tokenizer;
let mut tokenizer = Tokenizer::from_file("data/tokenizer-wiki.json")?;
// END pipeline_reload_tokenizer
// START pipeline_setup_normalizer
use tokenizers::normalizers::{
strip::StripAccents, unicode::NFD, utils::Sequence as NormalizerSequence,
};
let normalizer = NormalizerSequence::new(vec![NFD.into(), StripAccents.into()]);
// END pipeline_setup_normalizer
// START pipeline_test_normalizer
use tokenizers::{NormalizedString, Normalizer};
let mut normalized = NormalizedString::from("Hรฉllรฒ hรดw are รผ?");
normalizer.normalize(&mut normalized)?;
println!("{}", normalized.get());
// "Hello how are u?"
// END pipeline_test_normalizer
assert_eq!(normalized.get(), "Hello how are u?");
// START pipeline_replace_normalizer
tokenizer.with_normalizer(Some(normalizer));
// END pipeline_replace_normalizer
// START pipeline_setup_pre_tokenizer
use tokenizers::pre_tokenizers::whitespace::Whitespace;
use tokenizers::{OffsetReferential, OffsetType, PreTokenizedString, PreTokenizer};
let pre_tokenizer = Whitespace {};
let mut pre_tokenized = PreTokenizedString::from("Hello! How are you? I'm fine, thank you.");
pre_tokenizer.pre_tokenize(&mut pre_tokenized)?;
println!(
"{:?}",
pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte)
);
// [("Hello", (0, 5), None), ("!", (5, 6), None), ("How", (7, 10), None),
// ("are", (11, 14), None), ("you", (15, 18), None), ("?", (18, 19), None),
// ("I", (20, 21), None), ("\'", (21, 22), None), ("m", (22, 23), None),
// ("fine", (24, 28), None), (",", (28, 29), None), ("thank", (30, 35), None),
// ("you", (36, 39), None), (".", (39, 40), None)]
// END pipeline_setup_pre_tokenizer
assert_eq!(
pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte),
vec![
("Hello", (0, 5), &None),
("!", (5, 6), &None),
("How", (7, 10), &None),
("are", (11, 14), &None),
("you", (15, 18), &None),
("?", (18, 19), &None),
("I", (20, 21), &None),
("\'", (21, 22), &None),
("m", (22, 23), &None),
("fine", (24, 28), &None),
(",", (28, 29), &None),
("thank", (30, 35), &None),
("you", (36, 39), &None),
(".", (39, 40), &None)
]
);
// START pipeline_combine_pre_tokenizer
use tokenizers::pre_tokenizers::{digits::Digits, sequence::Sequence};
let pre_tokenizer = Sequence::new(vec![Whitespace {}.into(), Digits::new(true).into()]);
let mut pre_tokenized = PreTokenizedString::from("Call 911!");
pre_tokenizer.pre_tokenize(&mut pre_tokenized)?;
println!(
"{:?}",
pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte)
);
// END pipeline_combine_pre_tokenizer
assert_eq!(
pre_tokenized.get_splits(OffsetReferential::Original, OffsetType::Byte),
vec![
("Call", (0, 4), &None),
("9", (5, 6), &None),
("1", (6, 7), &None),
("1", (7, 8), &None),
("!", (8, 9), &None)
]
);
// START pipeline_replace_pre_tokenizer
tokenizer.with_pre_tokenizer(Some(pre_tokenizer));
// END pipeline_replace_pre_tokenizer
// START pipeline_setup_processor
use tokenizers::processors::template::TemplateProcessing;
tokenizer.with_post_processor(Some(
TemplateProcessing::builder()
.try_single("[CLS] $A [SEP]")
.unwrap()
.try_pair("[CLS] $A [SEP] $B:1 [SEP]:1")
.unwrap()
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)])
.build()
.unwrap(),
));
// END pipeline_setup_processor
// START pipeline_test_decoding
let output = tokenizer.encode("Hello, y'all! How are you ๐ ?", true)?;
println!("{:?}", output.get_ids());
// [1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2]
let decoded = tokenizer.decode(
&[1, 27253, 16, 93, 11, 5097, 5, 7961, 5112, 6218, 0, 35, 2],
true,
)?;
println!("{decoded}");
// "Hello , y ' all ! How are you ?"
// END pipeline_test_decoding
Ok(())
}
#[test]
#[ignore]
fn train_pipeline_bert() -> tokenizers::Result<()> {
// START bert_setup_tokenizer
use tokenizers::models::wordpiece::WordPiece;
use tokenizers::Tokenizer;
let mut bert_tokenizer = Tokenizer::new(
WordPiece::builder()
.unk_token("[UNK]".to_string())
.build()
.unwrap(),
);
// END bert_setup_tokenizer
// START bert_setup_normalizer
use tokenizers::normalizers::utils::Sequence as NormalizerSequence;
use tokenizers::normalizers::{strip::StripAccents, unicode::NFD, utils::Lowercase};
bert_tokenizer.with_normalizer(Some(NormalizerSequence::new(vec![
NFD.into(),
Lowercase.into(),
StripAccents.into(),
])));
// END bert_setup_normalizer
// START bert_setup_pre_tokenizer
use tokenizers::pre_tokenizers::whitespace::Whitespace;
bert_tokenizer.with_pre_tokenizer(Some(Whitespace {}));
// END bert_setup_pre_tokenizer
// START bert_setup_processor
use tokenizers::processors::template::TemplateProcessing;
bert_tokenizer.with_post_processor(Some(
TemplateProcessing::builder()
.try_single("[CLS] $A [SEP]")
.unwrap()
.try_pair("[CLS] $A [SEP] $B:1 [SEP]:1")
.unwrap()
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 2)])
.build()
.unwrap(),
));
// END bert_setup_processor
// START bert_train_tokenizer
use tokenizers::models::{wordpiece::WordPieceTrainer, TrainerWrapper};
let mut trainer: TrainerWrapper = WordPieceTrainer::builder()
.vocab_size(30_522)
.special_tokens(vec![
AddedToken::from("[UNK]", true),
AddedToken::from("[CLS]", true),
AddedToken::from("[SEP]", true),
AddedToken::from("[PAD]", true),
AddedToken::from("[MASK]", true),
])
.build()
.into();
let files = vec![
"data/wikitext-103-raw/wiki.train.raw".into(),
"data/wikitext-103-raw/wiki.test.raw".into(),
"data/wikitext-103-raw/wiki.valid.raw".into(),
];
bert_tokenizer.train_from_files(&mut trainer, files)?;
bert_tokenizer.save("data/bert-wiki.json", false)?;
// END bert_train_tokenizer
Ok(())
}
#[test]
fn pipeline_bert() -> tokenizers::Result<()> {
let mut bert_tokenizer = Tokenizer::from_file("data/bert-wiki.json")?;
// START bert_test_decoding
let output = bert_tokenizer.encode("Welcome to the ๐ค Tokenizers library.", true)?;
println!("{:?}", output.get_tokens());
// ["[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library", ".", "[SEP]"]
let decoded = bert_tokenizer.decode(output.get_ids(), true)?;
println!("{decoded}");
// "welcome to the tok ##eni ##zer ##s library ."
// END bert_test_decoding
assert_eq!(
output.get_tokens(),
&[
"[CLS]", "welcome", "to", "the", "[UNK]", "tok", "##eni", "##zer", "##s", "library",
".", "[SEP]"
]
);
assert_eq!(decoded, "welcome to the tok ##eni ##zer ##s library .");
// START bert_proper_decoding
use tokenizers::decoders::wordpiece::WordPiece as WordPieceDecoder;
bert_tokenizer.with_decoder(Some(WordPieceDecoder::default()));
let decoded = bert_tokenizer.decode(output.get_ids(), true)?;
// "welcome to the tokenizers library."
// END bert_proper_decoding
assert_eq!(decoded, "welcome to the tokenizers library.");
Ok(())
}