/* * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "bn_local.h" /* X9.31 routines for prime derivation */ /* * X9.31 prime derivation. This is used to generate the primes pi (p1, p2, * q1, q2) from a parameter Xpi by checking successive odd integers. */ static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, BN_GENCB *cb) { int i = 0, is_prime; if (!BN_copy(pi, Xpi)) return 0; if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) return 0; for (;;) { i++; BN_GENCB_call(cb, 0, i); /* NB 27 MR is specified in X9.31 */ is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb); if (is_prime < 0) return 0; if (is_prime) break; if (!BN_add_word(pi, 2)) return 0; } BN_GENCB_call(cb, 2, i); return 1; } /* * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they * will be returned too: this is needed for testing. */ int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; BIGNUM *t, *p1p2, *pm1; /* Only even e supported */ if (!BN_is_odd(e)) return 0; BN_CTX_start(ctx); if (p1 == NULL) p1 = BN_CTX_get(ctx); if (p2 == NULL) p2 = BN_CTX_get(ctx); t = BN_CTX_get(ctx); p1p2 = BN_CTX_get(ctx); pm1 = BN_CTX_get(ctx); if (pm1 == NULL) goto err; if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) goto err; if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) goto err; if (!BN_mul(p1p2, p1, p2, ctx)) goto err; /* First set p to value of Rp */ if (!BN_mod_inverse(p, p2, p1, ctx)) goto err; if (!BN_mul(p, p, p2, ctx)) goto err; if (!BN_mod_inverse(t, p1, p2, ctx)) goto err; if (!BN_mul(t, t, p1, ctx)) goto err; if (!BN_sub(p, p, t)) goto err; if (p->neg && !BN_add(p, p, p1p2)) goto err; /* p now equals Rp */ if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) goto err; if (!BN_add(p, p, Xp)) goto err; /* p now equals Yp0 */ for (;;) { int i = 1; BN_GENCB_call(cb, 0, i++); if (!BN_copy(pm1, p)) goto err; if (!BN_sub_word(pm1, 1)) goto err; if (!BN_gcd(t, pm1, e, ctx)) goto err; if (BN_is_one(t)) { /* * X9.31 specifies 8 MR and 1 Lucas test or any prime test * offering similar or better guarantees 50 MR is considerably * better. */ int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb); if (r < 0) goto err; if (r) break; } if (!BN_add(p, p, p1p2)) goto err; } BN_GENCB_call(cb, 3, 0); ret = 1; err: BN_CTX_end(ctx); return ret; } /* * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits * parameter is sum of number of bits in both. */ int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) { BIGNUM *t; int i; /* * Number of bits for each prime is of the form 512+128s for s = 0, 1, * ... */ if ((nbits < 1024) || (nbits & 0xff)) return 0; nbits >>= 1; /* * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits * - 1. By setting the top two bits we ensure that the lower bound is * exceeded. */ if (!BN_priv_rand(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) return 0; BN_CTX_start(ctx); t = BN_CTX_get(ctx); if (t == NULL) goto err; for (i = 0; i < 1000; i++) { if (!BN_priv_rand(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) goto err; /* Check that |Xp - Xq| > 2^(nbits - 100) */ if (!BN_sub(t, Xp, Xq)) goto err; if (BN_num_bits(t) > (nbits - 100)) break; } BN_CTX_end(ctx); if (i < 1000) return 1; return 0; err: BN_CTX_end(ctx); return 0; } /* * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the * previous function and supplied as input. */ int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; BN_CTX_start(ctx); if (Xp1 == NULL) Xp1 = BN_CTX_get(ctx); if (Xp2 == NULL) Xp2 = BN_CTX_get(ctx); if (Xp1 == NULL || Xp2 == NULL) goto error; if (!BN_priv_rand(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) goto error; if (!BN_priv_rand(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) goto error; if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) goto error; ret = 1; error: BN_CTX_end(ctx); return ret; }