/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "crypto/evp.h" #include "internal/numbers.h" #include "kdf_local.h" #ifndef OPENSSL_NO_SCRYPT static void kdf_scrypt_reset(EVP_KDF_IMPL *impl); static void kdf_scrypt_init(EVP_KDF_IMPL *impl); static int atou64(const char *nptr, uint64_t *result); static int scrypt_alg(const char *pass, size_t passlen, const unsigned char *salt, size_t saltlen, uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, unsigned char *key, size_t keylen); struct evp_kdf_impl_st { unsigned char *pass; size_t pass_len; unsigned char *salt; size_t salt_len; uint64_t N; uint32_t r, p; uint64_t maxmem_bytes; }; /* Custom uint64_t parser since we do not have strtoull */ static int atou64(const char *nptr, uint64_t *result) { uint64_t value = 0; while (*nptr) { unsigned int digit; uint64_t new_value; if ((*nptr < '0') || (*nptr > '9')) { return 0; } digit = (unsigned int)(*nptr - '0'); new_value = (value * 10) + digit; if ((new_value < digit) || ((new_value - digit) / 10 != value)) { /* Overflow */ return 0; } value = new_value; nptr++; } *result = value; return 1; } static EVP_KDF_IMPL *kdf_scrypt_new(void) { EVP_KDF_IMPL *impl; impl = OPENSSL_zalloc(sizeof(*impl)); if (impl == NULL) { KDFerr(KDF_F_KDF_SCRYPT_NEW, ERR_R_MALLOC_FAILURE); return NULL; } kdf_scrypt_init(impl); return impl; } static void kdf_scrypt_free(EVP_KDF_IMPL *impl) { kdf_scrypt_reset(impl); OPENSSL_free(impl); } static void kdf_scrypt_reset(EVP_KDF_IMPL *impl) { OPENSSL_free(impl->salt); OPENSSL_clear_free(impl->pass, impl->pass_len); memset(impl, 0, sizeof(*impl)); kdf_scrypt_init(impl); } static void kdf_scrypt_init(EVP_KDF_IMPL *impl) { /* Default values are the most conservative recommendation given in the * original paper of C. Percival. Derivation uses roughly 1 GiB of memory * for this parameter choice (approx. 128 * r * N * p bytes). */ impl->N = 1 << 20; impl->r = 8; impl->p = 1; impl->maxmem_bytes = 1025 * 1024 * 1024; } static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, const unsigned char *new_buffer, size_t new_buflen) { if (new_buffer == NULL) return 1; OPENSSL_clear_free(*buffer, *buflen); if (new_buflen > 0) { *buffer = OPENSSL_memdup(new_buffer, new_buflen); } else { *buffer = OPENSSL_malloc(1); } if (*buffer == NULL) { KDFerr(KDF_F_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); return 0; } *buflen = new_buflen; return 1; } static int is_power_of_two(uint64_t value) { return (value != 0) && ((value & (value - 1)) == 0); } static int kdf_scrypt_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args) { uint64_t u64_value; uint32_t value; const unsigned char *p; size_t len; switch (cmd) { case EVP_KDF_CTRL_SET_PASS: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); return scrypt_set_membuf(&impl->pass, &impl->pass_len, p, len); case EVP_KDF_CTRL_SET_SALT: p = va_arg(args, const unsigned char *); len = va_arg(args, size_t); return scrypt_set_membuf(&impl->salt, &impl->salt_len, p, len); case EVP_KDF_CTRL_SET_SCRYPT_N: u64_value = va_arg(args, uint64_t); if ((u64_value <= 1) || !is_power_of_two(u64_value)) return 0; impl->N = u64_value; return 1; case EVP_KDF_CTRL_SET_SCRYPT_R: value = va_arg(args, uint32_t); if (value < 1) return 0; impl->r = value; return 1; case EVP_KDF_CTRL_SET_SCRYPT_P: value = va_arg(args, uint32_t); if (value < 1) return 0; impl->p = value; return 1; case EVP_KDF_CTRL_SET_MAXMEM_BYTES: u64_value = va_arg(args, uint64_t); if (u64_value < 1) return 0; impl->maxmem_bytes = u64_value; return 1; default: return -2; } } static int kdf_scrypt_ctrl_uint32(EVP_KDF_IMPL *impl, int cmd, const char *value) { int int_value = atoi(value); if (int_value < 0 || (uint64_t)int_value > UINT32_MAX) { KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT32, KDF_R_VALUE_ERROR); return 0; } return call_ctrl(kdf_scrypt_ctrl, impl, cmd, (uint32_t)int_value); } static int kdf_scrypt_ctrl_uint64(EVP_KDF_IMPL *impl, int cmd, const char *value) { uint64_t u64_value; if (!atou64(value, &u64_value)) { KDFerr(KDF_F_KDF_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); return 0; } return call_ctrl(kdf_scrypt_ctrl, impl, cmd, u64_value); } static int kdf_scrypt_ctrl_str(EVP_KDF_IMPL *impl, const char *type, const char *value) { if (value == NULL) { KDFerr(KDF_F_KDF_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); return 0; } if (strcmp(type, "pass") == 0) return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS, value); if (strcmp(type, "hexpass") == 0) return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_PASS, value); if (strcmp(type, "salt") == 0) return kdf_str2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT, value); if (strcmp(type, "hexsalt") == 0) return kdf_hex2ctrl(impl, kdf_scrypt_ctrl, EVP_KDF_CTRL_SET_SALT, value); if (strcmp(type, "N") == 0) return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_SCRYPT_N, value); if (strcmp(type, "r") == 0) return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_R, value); if (strcmp(type, "p") == 0) return kdf_scrypt_ctrl_uint32(impl, EVP_KDF_CTRL_SET_SCRYPT_P, value); if (strcmp(type, "maxmem_bytes") == 0) return kdf_scrypt_ctrl_uint64(impl, EVP_KDF_CTRL_SET_MAXMEM_BYTES, value); return -2; } static int kdf_scrypt_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen) { if (impl->pass == NULL) { KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_PASS); return 0; } if (impl->salt == NULL) { KDFerr(KDF_F_KDF_SCRYPT_DERIVE, KDF_R_MISSING_SALT); return 0; } return scrypt_alg((char *)impl->pass, impl->pass_len, impl->salt, impl->salt_len, impl->N, impl->r, impl->p, impl->maxmem_bytes, key, keylen); } const EVP_KDF_METHOD scrypt_kdf_meth = { EVP_KDF_SCRYPT, kdf_scrypt_new, kdf_scrypt_free, kdf_scrypt_reset, kdf_scrypt_ctrl, kdf_scrypt_ctrl_str, NULL, kdf_scrypt_derive }; #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) static void salsa208_word_specification(uint32_t inout[16]) { int i; uint32_t x[16]; memcpy(x, inout, sizeof(x)); for (i = 8; i > 0; i -= 2) { x[4] ^= R(x[0] + x[12], 7); x[8] ^= R(x[4] + x[0], 9); x[12] ^= R(x[8] + x[4], 13); x[0] ^= R(x[12] + x[8], 18); x[9] ^= R(x[5] + x[1], 7); x[13] ^= R(x[9] + x[5], 9); x[1] ^= R(x[13] + x[9], 13); x[5] ^= R(x[1] + x[13], 18); x[14] ^= R(x[10] + x[6], 7); x[2] ^= R(x[14] + x[10], 9); x[6] ^= R(x[2] + x[14], 13); x[10] ^= R(x[6] + x[2], 18); x[3] ^= R(x[15] + x[11], 7); x[7] ^= R(x[3] + x[15], 9); x[11] ^= R(x[7] + x[3], 13); x[15] ^= R(x[11] + x[7], 18); x[1] ^= R(x[0] + x[3], 7); x[2] ^= R(x[1] + x[0], 9); x[3] ^= R(x[2] + x[1], 13); x[0] ^= R(x[3] + x[2], 18); x[6] ^= R(x[5] + x[4], 7); x[7] ^= R(x[6] + x[5], 9); x[4] ^= R(x[7] + x[6], 13); x[5] ^= R(x[4] + x[7], 18); x[11] ^= R(x[10] + x[9], 7); x[8] ^= R(x[11] + x[10], 9); x[9] ^= R(x[8] + x[11], 13); x[10] ^= R(x[9] + x[8], 18); x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); } for (i = 0; i < 16; ++i) inout[i] += x[i]; OPENSSL_cleanse(x, sizeof(x)); } static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) { uint64_t i, j; uint32_t X[16], *pB; memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); pB = B; for (i = 0; i < r * 2; i++) { for (j = 0; j < 16; j++) X[j] ^= *pB++; salsa208_word_specification(X); memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); } OPENSSL_cleanse(X, sizeof(X)); } static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, uint32_t *X, uint32_t *T, uint32_t *V) { unsigned char *pB; uint32_t *pV; uint64_t i, k; /* Convert from little endian input */ for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { *pV = *pB++; *pV |= *pB++ << 8; *pV |= *pB++ << 16; *pV |= (uint32_t)*pB++ << 24; } for (i = 1; i < N; i++, pV += 32 * r) scryptBlockMix(pV, pV - 32 * r, r); scryptBlockMix(X, V + (N - 1) * 32 * r, r); for (i = 0; i < N; i++) { uint32_t j; j = X[16 * (2 * r - 1)] % N; pV = V + 32 * r * j; for (k = 0; k < 32 * r; k++) T[k] = X[k] ^ *pV++; scryptBlockMix(X, T, r); } /* Convert output to little endian */ for (i = 0, pB = B; i < 32 * r; i++) { uint32_t xtmp = X[i]; *pB++ = xtmp & 0xff; *pB++ = (xtmp >> 8) & 0xff; *pB++ = (xtmp >> 16) & 0xff; *pB++ = (xtmp >> 24) & 0xff; } } #ifndef SIZE_MAX # define SIZE_MAX ((size_t)-1) #endif /* * Maximum power of two that will fit in uint64_t: this should work on * most (all?) platforms. */ #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) /* * Maximum value of p * r: * p <= ((2^32-1) * hLen) / MFLen => * p <= ((2^32-1) * 32) / (128 * r) => * p * r <= (2^30-1) */ #define SCRYPT_PR_MAX ((1 << 30) - 1) static int scrypt_alg(const char *pass, size_t passlen, const unsigned char *salt, size_t saltlen, uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, unsigned char *key, size_t keylen) { int rv = 0; unsigned char *B; uint32_t *X, *V, *T; uint64_t i, Blen, Vlen; /* Sanity check parameters */ /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) return 0; /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ if (p > SCRYPT_PR_MAX / r) { EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Need to check N: if 2^(128 * r / 8) overflows limit this is * automatically satisfied since N <= UINT64_MAX. */ if (16 * r <= LOG2_UINT64_MAX) { if (N >= (((uint64_t)1) << (16 * r))) { EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } } /* Memory checks: check total allocated buffer size fits in uint64_t */ /* * B size in section 5 step 1.S * Note: we know p * 128 * r < UINT64_MAX because we already checked * p * r < SCRYPT_PR_MAX */ Blen = p * 128 * r; /* * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] */ if (Blen > INT_MAX) { EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t * This is combined size V, X and T (section 4) */ i = UINT64_MAX / (32 * sizeof(uint32_t)); if (N + 2 > i / r) { EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } Vlen = 32 * r * (N + 2) * sizeof(uint32_t); /* check total allocated size fits in uint64_t */ if (Blen > UINT64_MAX - Vlen) { EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* Check that the maximum memory doesn't exceed a size_t limits */ if (maxmem > SIZE_MAX) maxmem = SIZE_MAX; if (Blen + Vlen > maxmem) { EVPerr(EVP_F_SCRYPT_ALG, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* If no key return to indicate parameters are OK */ if (key == NULL) return 1; B = OPENSSL_malloc((size_t)(Blen + Vlen)); if (B == NULL) { EVPerr(EVP_F_SCRYPT_ALG, ERR_R_MALLOC_FAILURE); return 0; } X = (uint32_t *)(B + Blen); T = X + 32 * r; V = T + 32 * r; if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), (int)Blen, B) == 0) goto err; for (i = 0; i < p; i++) scryptROMix(B + 128 * r * i, r, N, X, T, V); if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(), keylen, key) == 0) goto err; rv = 1; err: if (rv == 0) EVPerr(EVP_F_SCRYPT_ALG, EVP_R_PBKDF2_ERROR); OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); return rv; } #endif