/* * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "modes_local.h" #include #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) typedef size_t size_t_aX __attribute((__aligned__(1))); #else typedef size_t size_t_aX; #endif #if defined(__GNUC__) && (__GNUC__ > 6) # pragma GCC diagnostic ignored "-Wstringop-overflow=" #endif /* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { unsigned int n; size_t l = 0; n = *num; if (enc) { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = ivec[n] ^= *(in++); --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) { *(size_t_aX *)(out + n) = *(size_t_aX *)(ivec + n) ^= *(size_t_aX *)(in + n); } len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { out[n] = ivec[n] ^= in[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ivec, key); } out[l] = ivec[n] ^= in[l]; ++l; n = (n + 1) % 16; } *num = n; } else { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { unsigned char c; *(out++) = ivec[n] ^ (c = *(in++)); ivec[n] = c; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) { size_t t = *(size_t_aX *)(in + n); *(size_t_aX *)(out + n) = *(size_t_aX *)(ivec + n) ^ t; *(size_t_aX *)(ivec + n) = t; } len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { unsigned char c; out[n] = ivec[n] ^ (c = in[n]); ivec[n] = c; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { unsigned char c; if (n == 0) { (*block) (ivec, ivec, key); } out[l] = ivec[n] ^ (c = in[l]); ivec[n] = c; ++l; n = (n + 1) % 16; } *num = n; } } /* * This expects a single block of size nbits for both in and out. Note that * it corrupts any extra bits in the last byte of out */ static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out, int nbits, const void *key, unsigned char ivec[16], int enc, block128_f block) { int n, rem, num; unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't * use) one byte off the end */ if (nbits <= 0 || nbits > 128) return; /* fill in the first half of the new IV with the current IV */ memcpy(ovec, ivec, 16); /* construct the new IV */ (*block) (ivec, ivec, key); num = (nbits + 7) / 8; if (enc) /* encrypt the input */ for (n = 0; n < num; ++n) out[n] = (ovec[16 + n] = in[n] ^ ivec[n]); else /* decrypt the input */ for (n = 0; n < num; ++n) out[n] = (ovec[16 + n] = in[n]) ^ ivec[n]; /* shift ovec left... */ rem = nbits % 8; num = nbits / 8; if (rem == 0) memcpy(ivec, ovec + num, 16); else for (n = 0; n < 16; ++n) ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem); /* it is not necessary to cleanse ovec, since the IV is not secret */ } /* N.B. This expects the input to be packed, MS bit first */ void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out, size_t bits, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; unsigned char c[1], d[1]; for (n = 0; n < bits; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; cfbr_encrypt_block(c, d, 1, key, ivec, enc, block); out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } } void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; for (n = 0; n < length; ++n) cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block); }