
Kallmeyer, Roos Parsing

Parsing

Earley Parsing

Laura Kallmeyer, Magnus Roos

Heinrich-Heine-Universität Düsseldorf

Sommersemester 2014

Earley Parsing 1 Sommer 2014

Kallmeyer, Roos Parsing

Overview

1. Idea

2. Algorithm

3. Tabulation

4. Parse trees

5. Lookaheads

6. Conclusion

Earley Parsing 2 Sommer 2014

Kallmeyer, Roos Parsing

Idea (1)

Goal: overcome problems with pure TD/BU approaches.

Earley’s algorithm can be seen as a

• bottom-up parser with top-down control, i.e., a bottom-up

parsing that does only reductions that can be top-down

predicted from S, or a

• top-down parser with bottom-up recognition

Earley Parsing 3 Sommer 2014

Kallmeyer, Roos Parsing

Idea (2)

At each time of parsing, one production A → X1 . . .Xk is

considered such that

• some part X1 . . .Xi has already been bottom-up recognized

(completed)

• while some part Xi+1 . . .Xk has been top-down predicted.

As in the left-corner chart parser, this situation can be

characterized by a dotted production (sometimes called Earley

item) A → X1 . . .Xi •Xi+1 . . .Xk.

Dotted productions are called active items. Productions of the

form A → α• are called completed items.

Earley Parsing 4 Sommer 2014

Kallmeyer, Roos Parsing

Idea (3)

The Earley parser simulates a top-down left-to-right depth-first

traversal of the parse tree while moving the dot such that for each

node

• first, the dot is to its left (the node is predicted),

• then the dot traverses the tree below,

• then the dot is to its right (the subtree below the node is

completed)

Each state of the parser can be characterized by a set of dotted

productions A → X1 . . .Xi •Xi+1 . . .Xk. For each of these, one

needs to keep track of the input part spanned by the completed

part of the rhs, i.e., by X1 . . .Xi.

Earley Parsing 5 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (1)

The items describing partial results of the parser contain a dotted

production and the start and end index of the completed part of

the rhs:

Item form: [A → α • β, i, j] with A → αβ ∈ P, 0 ≤ i ≤ j ≤ n.

Parsing starts with predicting all S-productions:

Axioms:
[S → •α, 0, 0]

S → α ∈ P

Earley Parsing 6 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (2)

If the dot of an item is followed by a non-terminal symbol B, a new

B-production can be predicted. The completed part of the new

item (still empty) starts at the index where the completed part of

the first item ends.

Predict:
[A → α •Bβ, i, j]

[B → •γ, j, j]
B → γ ∈ P

If the dot of an item is followed by a terminal symbol a that is the

next input symbol, then the dot can be moved over this terminal

(the terminal is scanned). The end position of the completed part

is incremented.

Scan:
[A → α • aβ, i, j]

[A → αa • β, i, j + 1]
wj+1 = a

Earley Parsing 7 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (3)

If the dot of an item is followed by a non-terminal symbol B and if

there is a second item with a dotted B-production and a fully

completed rhs and if, furthermore, the completed part of the

second item starts at the position where the completed part of the

first ends, then the dot in the first can be moved over the B while

changing the end index to the end index of the completed

B-production.

Complete:
[A → α •Bβ, i, j], [B → γ•, j, k]

[A → αB • β, i, k]

The parser is successfull if a completed S-production spanning the

entire input can be deduced:

Goal items: [S → α•, 0, n] for some S → α ∈ P .

Earley Parsing 8 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (4)

Note that

• this algorithm can deal with ϵ-productions;

• loops and left-recursions are no problem since an active item is

generated only once;

• the algorithm works for any type of CFG.

Earley Parsing 9 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (5)

Example: S → aB | bA,A → aS | bAA | a, B → bS | aBB | b.

w = abab. Set of deduced items:

1. [S → •aB, 0, 0] axiom

2. [S → •bA, 0, 0] axiom

3. [S → a •B, 0, 1] scan with 1.

4. [B → •bS, 1, 1] predict with 3.

5. [B → •b, 1, 1] predict with 3.

6. [B → •aBB, 1, 1] predict with 3.

7. [B → b • S, 1, 2] scan with 4.

8. [B → b•, 1, 2] scan with 5.

9. [S → aB•, 0, 2] complete with 3. and 8.

Earley Parsing 10 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (6)

10. [S → •aB, 2, 2] predict with 7.

11. [S → •bA, 2, 2] predict with 7.

12. [S → a •B, 2, 3] scan with 10.

13. [B → •bS, 3, 3] predict with 12.

14. [B → •b, 3, 3] predict with 12.

15. [B → •aBB, 3, 3] predict with 12.

16. [B → b • S, 3, 4] scan with 13.

17. [B → b•, 3, 4] scan with 14.

18. [S → •aB, 4, 4] predict with 16.

19. [S → •bA, 4, 4] predict with 16.

20. [S → aB•, 2, 4] complete with 12. and 17.

21. [B → bS•, 1, 4] complete with 7. and 20.

22. [S → aB•, 0, 4] complete with 3. and 21.

Earley Parsing 11 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (7)

Soundness and completeness:

The following holds:

[A → α • β, i, j]

iff

S
∗

⇒ w1 . . . wiAγ ⇒ w1 . . . wiαβγ
∗

⇒ w1 . . . wiwi+1 . . . wjβγ

for some γ ∈ (N ∪ T ∗).

The algorithm is in particular prefix-valid: if there is an item with

end position j, then there is a word in the language with prefix

w1 . . . wj .

Earley Parsing 12 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (8)

In addition, one can use passive items [A, i, j] with A ∈ N ,

0 ≤ i ≤ j ≤ n.

Then, we need an additional convert rule, that converts a

completed active item into a passive one:

Convert:
[B → γ•, j, k]

[B, j, k]

The goal item is then [S, 0, n].

Earley Parsing 13 Sommer 2014

Kallmeyer, Roos Parsing

Algorithm (9)

The Complete rule can use passive items now:

Complete:
[A → α •Bβ, i, j], [B, j, k]

[A → αB • β, i, k]

The advantage is that we obtain a higher degree of factorization: A

B-subtree might have different analyses. Complete can use this B

category now independent from the concrete analyses, i.e., there is

only one single application of Complete for all of them.

Earley Parsing 14 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (1)

We can tabulate the dotted productions depending on the indices

of the covered input.

I.e., we adopt a (n+ 1)× (n+ 1)-chart C with

A → α • β ∈ Ci,j iff [A → α • β, i, j].

The chart is initialized with

C0,0 := {S → •α |S → α ∈ P} and

Ci,j = ∅ for all i, j ∈ [0..n] with i ̸= 0 or j ̸= 0.

It can then be filled in the following way:

Earley Parsing 15 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (2)

Let us consider the version without passive items.

The chart is filled row by row:

for every end-of-span index k:

• we first compute all applications of predict and complete that

yield new items with end-of-span index k;

• then, we compute all applications of scan which gives items

with end-of-span index k + 1.

Earley Parsing 16 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (3)

for all k ∈ [0..n]:

do until chart does not change any more:

for all j ∈ [0..k] and all p ∈ Cj,k:

if p = A → α •Bβ

then add B → •γ to Ck,k for all B → γ ∈ P predict

else if p = B → γ•

then for all i ∈ [0..j]:

if there is a A → α •Bβ ∈ Ci,j

then add A → αB • β to Ci,k complete

for all j ∈ [0..k] and for all p ∈ Cj,k:

if p = A → α • wk+1β

then add A → αwk+1 • β to Cj,k+1 scan

Earley Parsing 17 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (4)

Note that predict and complete do not increment the end of the

spanned input, i.e., they add only elements to the fields C...,k (the

k-th row of the chart).

Scan however adds elements to the C...,k+1 (the k + 1-th row).

This is why first, all possible predict and complete operations are

performed to generate new chart entries in the k-th row. Then,

scan is applied and one can move on to the next row k + 1.

Since predict and complete are applied as often as possible,

ϵ-productions and left recursion are no problem for this algorithm.

Earley Parsing 18 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (5)

Implementation:

Besides the chart, for every k, we keep an agenda Ak of those items

from the chart that still need to be processed.

Initially, for k = 0, this agenda contains all S → •α, the other

agendas are empty.

We process the items in the agendas from k = 0 to k = n. For each

k, we stop once the k-agenda is empty.

Earley Parsing 19 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (6)

• Items x of the form A → α •Bβ trigger a predict operation.

The newly created items, if they are not yet in the chart, are

added to chart and k-agenda.

In addition, if ϵ-productions are allowed, x also triggers a

complete where the chart is searched for a completed B-item

ranging from k to k. The new items (if not in the chart yet)

are added to the k-agenda and the chart.

x is removed from the k-agenda.

Earley Parsing 20 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (8)

• Items x of the form B → γ• trigger a complete operation where

the chart is searched for corresponding items A → α •Bβ.

The newly created items are added to the chart and the

k-agenda (if they are not yet in the chart), x is removed from

the k-agenda.

• Items x of the form A → α • aβ trigger a scan operation.

The newly created items (if not yet in the chart) are added to

the chart and the k + 1-agenda, x is removed from the

k-agenda.

Earley Parsing 21 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (9)

Example 1 (no ϵ-productions): S → ASB | c, A → a,B → b.

Input w = acb

A0 = {[S → •ASB, 0, 0], [S → •c, 0, 0]}

2

1

0 S → •ASB

S → •c

0 1 2 3

S → •ASB triggers a predict:

Earley Parsing 22 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (10)

A0 = {[S → •c, 0, 0], [A → •a, 0, 0]}

2

1

0 S → •ASB

S → •c

A → •a

0 1 2 3

S → •c triggers a scan that fails, A → •a triggers a successful scan:

Earley Parsing 23 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (11)

A0 = {}, A1 = {[A → a•, 0, 1]}

2

1 A → a•

0 S → •ASB

S → •c

A → •a

0 1 2 3

A → a• triggers a complete:

Earley Parsing 24 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (12)

A0 = {}, A1 = {[S → A • SB, 0, 1]}

2

1 S → A • SB

A → a•

0 S → •ASB

S → •c

A → •a

0 1 2 3

S → A • SB triggers a predict:

Earley Parsing 25 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (13)

A0 = {}, A1 = {[S → •ASB, 1, 1], [S → •c, 1, 1]}

2

1 S → A • SB S → •ASB

A → a• S → •c

0 S → •ASB

S → •c

A → •a

0 1 2 3

S → •ASB triggers a predict:

Earley Parsing 26 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (14)

A0 = {}, A1 = {[S → •c, 1, 1], [A → •a, 1, 1]}

2

1 S → A • SB S → •ASB

A → a• S → •c

A → •a

0 S → •ASB

S → •c

A → •a

0 1 2 3

S → •c triggers a scan:

Earley Parsing 27 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (15)

A0 = {}, A1 = {[A → •a, 1, 1]}, A2 = {[S → c•, 1, 2]}

2 S → c•

1 S → A • SB S → •ASB

A → a• S → •c

A → •a

0 S → •ASB

S → •c

A → •a

0 1 2 3

A → •a triggers a scan that fails, then S → c• triggers a complete:

Earley Parsing 28 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (16)

A0 = {}, A1 = {}, A2 = {[S → AS •B, 0, 2]}

2 S → AS •B S → c•

1 S → A • SB S → •ASB

A → a• S → •c

A → •a

0 S → •ASB

S → •c

A → •a

0 1 2 3

S → AS •B triggers the prediction of [B → •b, 2, 2], which triggers

a successful scan:

Earley Parsing 29 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (17)

A0 = {}, A1 = {}, A2 = {}, A3 = {[B → b•, 2, 3]}

3 B → b•

2 S → AS •B S → c• B → •b

1 S → A • SB S → •ASB

A → a• S → •c

A → •a

0 S → •ASB

S → •c

A → •a

0 1 2 3

B → b• triggers a complete which leads to a goal item:

Earley Parsing 30 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (18)

A0 = {}, A1 = {}, A2 = {}, A3 = {}

3 S → ASB• B → b•

2 S → AS •B S → c• B → •b

1 S → A • SB S → •ASB

A → a• S → •c

A → •a

0 S → •ASB

S → •c

A → •a

0 1 2 3

Earley Parsing 31 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (19)

Example 2 (with ϵ-productions):

S → ABB,A → a,B → ϵ.

Input w = a

1 A → a•

S → A •BB B → •

S → AB •B

S → ABB•

0 S → •ABB

A → •a

0 1

Earley Parsing 32 Sommer 2014

Kallmeyer, Roos Parsing

Tabulation (20)

Overview: TD/BU and mixed approaches:

TD/BU item form chart parsing

Top-down TD [Γ, i] no

Bottom-up BU [Γ, i] no

CYK BU [A, i, l] yes

Left corner mixed [Γcompl,Γtd,Γlhs] no

[A → α • β, i, l] yes

Earley mixed [A → α • β, i, j] yes

Earley Parsing 33 Sommer 2014

Kallmeyer, Roos Parsing

Parsing (1)

So far, we have a recognizer.

• One way to extend it to a parser it to read off the parse tree in

a top-down way from the chart.

• Alternatively, in every completion step, we can record in the

chart the way the new item can be obtained by adding pointers

to its pair of antecedents. Then, for constructing the parse

tree, we only need to follow the pointers.

Earley Parsing 34 Sommer 2014

Kallmeyer, Roos Parsing

Parsing (2)

First possibility (initial call parse-tree(S,0,n)):

parse-tree(X,i,j)

trees := ∅;

if X = wj and j = i+ 1 then trees := {wj}

else for all X → X1 . . .Xr• ∈ Ci,j

for all i1, . . . , ir, i ≤ i1 ≤ . . . ≤ ir−1 ≤ ir = j

and all t1, . . . tr with

t1 ∈ parse-tree(X1, i, i1) and

tl ∈ parse-tree (Xl, il−1, il) for 1 < l ≤ r:

trees := trees ∪{X(t1, . . . , tr)};

output trees

Earley Parsing 35 Sommer 2014

Kallmeyer, Roos Parsing

Parsing (3)

Second possibility:

We equip items with an additional set of pairs of pointers to other

items in the item set.

Whenever an item [A → αA • β, i, k] is obtained in a complete

operation from [A → α • Aβ, i, j] and [A → γ•, j, k], we add a pair

of pointers to the two antecedent items to the pointer set of the

consequent item.

Obviously, items might have more than one element in their set if

the grammar is ambiguous.

Earley Parsing 36 Sommer 2014

Kallmeyer, Roos Parsing

Parsing (4)

Example: S → AB,A → Ac | a,B → cB | b. Input w = acb.

Item set (with list of pointer pairs):

1 [S → •AB, 0, 0] 2 [A → •Ac, 0, 0] 3 [A → •a, 0, 0]

4 [A → a•, 0, 1]

5 [A → A • c, 0, 1], {⟨2, 4⟩} 6 [S → A •B, 0, 1], {⟨1, 4⟩}

7 [B → •cB, 1, 1] 8 [B → •b, 1, 1]

9 [A → Ac•, 0, 2] 10 [B → c •B, 1, 2]

11 [A → A • c, 0, 2], {⟨2, 9⟩} 12 [S → A •B, 0, 2], {⟨1, 9⟩}

13 [B → •cB, 2, 2] 14 [B → •b, 2, 2] 15 [B → b•, 2, 3]

16 [B → cB•, 1, 3], {⟨10, 15⟩}

17 [S → AB•, 0, 3], {⟨6, 16⟩, ⟨12, 15⟩}

Earley Parsing 37 Sommer 2014

Kallmeyer, Roos Parsing

Lookaheads

Two kinds of lookaheads: a prediction lookahead and a reduction

lookahead:

Predict with lookahead:

[A → α •Bβ, i, j]

[B → •γ, j, j]
B → γ ∈ P,wj+1 ∈ First(γ) or ϵ ∈ First(γ)

Complete with lookahead:

[A → α •Bβ, i, j], [B → γ•, j, k]

[A → αB • β, i, k]

wk+1 ∈ First(β)

or ϵ ∈ First(β) and wk+1 ∈ Follow(A)

Instead of precomputing the Follow sets, one can compute the

actual follows while predicting.

Earley Parsing 38 Sommer 2014

Kallmeyer, Roos Parsing

Conclusion

• Earley is a top-down restricted bottom-up parser.

• The three operations to compute new partial parsing results

are predict, scan and complete.

• Earley is a chart parser.

• Earley can parse all CFGs.

Earley Parsing 39 Sommer 2014

