/** Copyright (C) powturbo 2013-2023 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - homepage : https://sites.google.com/site/powturbo/ - github : https://github.com/powturbo - twitter : https://twitter.com/powturbo - email : powturbo [_AT_] gmail [_DOT_] com **/ // "Integer Compression: max.bits, delta, zigzag, xor" #ifdef __AVX2__ #include #elif defined(__AVX__) #include #elif defined(__SSE4_1__) #include #elif defined(__SSSE3__) #ifdef __powerpc64__ #define __SSE__ 1 #define __SSE2__ 1 #define __SSE3__ 1 #define NO_WARN_X86_INTRINSICS 1 #endif #include #elif defined(__SSE2__) #include #elif defined(__ARM_NEON) #include #endif #if defined(_MSC_VER) && _MSC_VER < 1600 #include "vs/stdint.h" #else #include #endif #include "../include_/sse_neon.h" #ifdef __ARM_NEON #define PREFETCH(_ip_,_rw_) #else #define PREFETCH(_ip_,_rw_) //__builtin_prefetch(_ip_,_rw_) #endif //------------------------ zigzag encoding ---------------------------------------------- static inline unsigned char zigzagenc8( signed char x) { return x << 1 ^ x >> 7; } static inline char zigzagdec8( unsigned char x) { return x >> 1 ^ -(x & 1); } static inline unsigned short zigzagenc16(short x) { return x << 1 ^ x >> 15; } static inline short zigzagdec16(unsigned short x) { return x >> 1 ^ -(x & 1); } static inline unsigned zigzagenc32(int x) { return x << 1 ^ x >> 31; } static inline int zigzagdec32(unsigned x) { return x >> 1 ^ -(x & 1); } static inline uint64_t zigzagenc64(int64_t x) { return x << 1 ^ x >> 63; } static inline int64_t zigzagdec64(uint64_t x) { return x >> 1 ^ -(x & 1); } #ifdef __AVX2__ #define mm256_srai_epi64_63(v, s) _mm256_srai_epi32(_mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)), 31) static ALWAYS_INLINE __m256i mm256_zzage_epi32(__m256i v) { return _mm256_xor_si256(_mm256_slli_epi32(v,1), _mm256_srai_epi32( v,31)); } static ALWAYS_INLINE __m256i mm256_zzage_epi64(__m256i v) { return _mm256_xor_si256(_mm256_slli_epi64(v,1), mm256_srai_epi64_63(v,63)); } static ALWAYS_INLINE __m256i mm256_zzagd_epi32(__m256i v) { return _mm256_xor_si256(_mm256_srli_epi32(v,1), _mm256_srai_epi32( _mm256_slli_epi32(v,31),31) ); } static ALWAYS_INLINE __m256i mm256_zzagd_epi64(__m256i v) { return _mm256_xor_si256(_mm256_srli_epi64(v,1), mm256_srai_epi64_63(_mm256_slli_epi64(v,63),63) ); } //-- AVX2 delta <-> prefix sum (scan) / xor encode <-> xor decode --------------------------------------------------------------------------------------- static ALWAYS_INLINE __m256i mm256_delta_epi32(__m256i v, __m256i sv) { return _mm256_sub_epi32(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 12)); } static ALWAYS_INLINE __m256i mm256_delta_epi64(__m256i v, __m256i sv) { return _mm256_sub_epi64(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 8)); } static ALWAYS_INLINE __m256i mm256_xore_epi32( __m256i v, __m256i sv) { return _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 12)); } static ALWAYS_INLINE __m256i mm256_xore_epi64( __m256i v, __m256i sv) { return _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 8)); } #define MM256_HDEC_EPI32(_v_,_sv_,_ho_) {\ _v_ = _ho_(_v_, _mm256_slli_si256(_v_, 4));\ _v_ = _ho_(_v_, _mm256_slli_si256(_v_, 8));\ return _ho_( _mm256_permute2x128_si256( _mm256_shuffle_epi32(_sv_,_MM_SHUFFLE(3, 3, 3, 3)), _sv_, 0x11),\ _ho_(_v_, _mm256_permute2x128_si256(_mm256_setzero_si256(),_mm256_shuffle_epi32(_v_, _MM_SHUFFLE(3, 3, 3, 3)), 0x20)));\ } static ALWAYS_INLINE __m256i mm256_scan_epi32(__m256i v, __m256i sv) { MM256_HDEC_EPI32(v,sv,_mm256_add_epi32); } static ALWAYS_INLINE __m256i mm256_xord_epi32(__m256i v, __m256i sv) { MM256_HDEC_EPI32(v,sv,_mm256_xor_si256); } #define MM256_HDEC_EPI64(_v_,_sv_,_ho_) {\ _v_ = _ho_(_v_, _mm256_alignr_epi8(_v_, _mm256_permute2x128_si256(_v_, _v_, _MM_SHUFFLE(0, 0, 2, 0)), 8));\ return _ho_(_mm256_permute4x64_epi64(_sv_, _MM_SHUFFLE(3, 3, 3, 3)), _ho_(_mm256_permute2x128_si256(_v_, _v_, _MM_SHUFFLE(0, 0, 2, 0)), _v_) );\ } static ALWAYS_INLINE __m256i mm256_scan_epi64(__m256i v, __m256i sv) { MM256_HDEC_EPI64(v,sv,_mm256_add_epi64); } static ALWAYS_INLINE __m256i mm256_xord_epi64(__m256i v, __m256i sv) { MM256_HDEC_EPI64(v,sv,_mm256_xor_si256); } static ALWAYS_INLINE __m256i mm256_scani_epi32(__m256i v, __m256i sv, __m256i vi) { return _mm256_add_epi32(mm256_scan_epi32(v, sv), vi); } //-- Horizontal OR --------------------------------------- static ALWAYS_INLINE unsigned mm256_hor_epi32(__m256i v) { v = _mm256_or_si256(v, _mm256_srli_si256(v, 8)); v = _mm256_or_si256(v, _mm256_srli_si256(v, 4)); return _mm256_extract_epi32(v,0) | _mm256_extract_epi32(v, 4); } static ALWAYS_INLINE uint64_t mm256_hor_epi64(__m256i v) { v = _mm256_or_si256(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(2, 0, 0, 1))); return _mm256_extract_epi64(v, 1) | _mm256_extract_epi64(v,0); } #endif #if defined(__SSSE3__) || defined(__ARM_NEON) #define mm_srai_epi64_63(_v_, _s_) _mm_srai_epi32(_mm_shuffle_epi32(_v_, _MM_SHUFFLE(3, 3, 1, 1)), 31) static ALWAYS_INLINE __m128i mm_zzage_epi16(__m128i v) { return _mm_xor_si128( mm_slli_epi16(v,1), mm_srai_epi16( v,15)); } static ALWAYS_INLINE __m128i mm_zzage_epi32(__m128i v) { return _mm_xor_si128( mm_slli_epi32(v,1), mm_srai_epi32( v,31)); } static ALWAYS_INLINE __m128i mm_zzage_epi64(__m128i v) { return _mm_xor_si128( mm_slli_epi64(v,1), mm_srai_epi64_63(v,63)); } static ALWAYS_INLINE __m128i mm_zzagd_epi16(__m128i v) { return _mm_xor_si128( mm_srli_epi16(v,1), mm_srai_epi16( mm_slli_epi16(v,15),15)); } static ALWAYS_INLINE __m128i mm_zzagd_epi32(__m128i v) { return _mm_xor_si128( mm_srli_epi32(v,1), mm_srai_epi32( mm_slli_epi32(v,31),31)); } static ALWAYS_INLINE __m128i mm_zzagd_epi64(__m128i v) { return _mm_xor_si128( mm_srli_epi64(v,1), mm_srai_epi64_63( mm_slli_epi64(v,63),63)); } static ALWAYS_INLINE __m128i mm_delta_epi16(__m128i v, __m128i sv) { return _mm_sub_epi16(v, _mm_alignr_epi8(v, sv, 14)); } static ALWAYS_INLINE __m128i mm_delta_epi32(__m128i v, __m128i sv) { return _mm_sub_epi32(v, _mm_alignr_epi8(v, sv, 12)); } static ALWAYS_INLINE __m128i mm_delta_epi64(__m128i v, __m128i sv) { return _mm_sub_epi64(v, _mm_alignr_epi8(v, sv, 8)); } static ALWAYS_INLINE __m128i mm_xore_epi16( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 14)); } static ALWAYS_INLINE __m128i mm_xore_epi32( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 12)); } static ALWAYS_INLINE __m128i mm_xore_epi64( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 8)); } #define MM_HDEC_EPI32(_v_,_sv_,_ho_) { \ _v_ = _ho_(_v_, _mm_slli_si128(_v_, 4)); \ _v_ = _ho_(mm_shuffle_nnnn_epi32(_sv_, 3), _ho_(_mm_slli_si128(_v_, 8), _v_));\ } static ALWAYS_INLINE __m128i mm_scan_epi32(__m128i v, __m128i sv) { MM_HDEC_EPI32(v,sv,_mm_add_epi32); return v; } static ALWAYS_INLINE __m128i mm_xord_epi32(__m128i v, __m128i sv) { MM_HDEC_EPI32(v,sv,_mm_xor_si128); return v; } #define MM_HDEC_EPI64(_v_,_sv_,_ho_) { \ _v_ = _ho_(_v_, _mm_slli_si128(_v_, 8)); \ _v_ = _ho_(_mm_shuffle_epi8(_sv_, _mm_set_epi8(15,14,13,12,11,10,9,8, 15,14,13,12,11,10,9,8)), _v_);\ } static ALWAYS_INLINE __m128i mm_scan_epi64(__m128i v, __m128i sv) { MM_HDEC_EPI64(v,sv,_mm_add_epi64); return v; } static ALWAYS_INLINE __m128i mm_xord_epi64(__m128i v, __m128i sv) { MM_HDEC_EPI64(v,sv,_mm_xor_si128); return v; } #define MM_HDEC_EPI16(_v_,_sv_,_ho_) {\ _v_ = _ho_( _v_, _mm_slli_si128(_v_, 2));\ _v_ = _ho_( _v_, _mm_slli_si128(_v_, 4));\ _v_ = _ho_(_ho_(_v_, _mm_slli_si128(_v_, 8)), _mm_shuffle_epi8(_sv_, _mm_set1_epi16(0x0f0e)));\ } static ALWAYS_INLINE __m128i mm_scan_epi16(__m128i v, __m128i sv) { MM_HDEC_EPI16(v,sv,_mm_add_epi16); return v; } static ALWAYS_INLINE __m128i mm_xord_epi16(__m128i v, __m128i sv) { MM_HDEC_EPI16(v,sv,_mm_xor_si128); return v; } #define MM_HDEC_EPI8(_v_,_sv_,_ho_) {\ _v_ = _ho_( _v_, _mm_slli_si128(_v_, 1));\ _v_ = _ho_( _v_, _mm_slli_si128(_v_, 2));\ _v_ = _ho_( _v_, _mm_slli_si128(_v_, 4));\ _v_ = _ho_(_ho_(_v_, _mm_slli_si128(_v_, 8)), _mm_shuffle_epi8(_sv_, _mm_set1_epi8(0xfe)));/*TODO: test*/\ } static ALWAYS_INLINE __m128i mm_scan_epi8(__m128i v, __m128i sv) { MM_HDEC_EPI8(v,sv,_mm_add_epi8); return v; } static ALWAYS_INLINE __m128i mm_xord_epi8(__m128i v, __m128i sv) { MM_HDEC_EPI8(v,sv,_mm_xor_si128); return v; } //-------- scan with vi delta > 0 ----------------------------- static ALWAYS_INLINE __m128i mm_scani_epi16(__m128i v, __m128i sv, __m128i vi) { return _mm_add_epi16(mm_scan_epi16(v, sv), vi); } static ALWAYS_INLINE __m128i mm_scani_epi32(__m128i v, __m128i sv, __m128i vi) { return _mm_add_epi32(mm_scan_epi32(v, sv), vi); } #define MM_HOZ_EPI16(v,_ho_) {\ v = _ho_(v, _mm_srli_si128(v, 8));\ v = _ho_(v, _mm_srli_si128(v, 6));\ v = _ho_(v, _mm_srli_si128(v, 4));\ v = _ho_(v, _mm_srli_si128(v, 2));\ } #define MM_HOZ_EPI32(v,_ho_) {\ v = _ho_(v, _mm_srli_si128(v, 8));\ v = _ho_(v, _mm_srli_si128(v, 4));\ } static ALWAYS_INLINE uint16_t mm_hor_epi16( __m128i v) { MM_HOZ_EPI16(v,_mm_or_si128); return (unsigned short)_mm_cvtsi128_si32(v); } static ALWAYS_INLINE uint32_t mm_hor_epi32( __m128i v) { MM_HOZ_EPI32(v,_mm_or_si128); return (unsigned )_mm_cvtsi128_si32(v); } static ALWAYS_INLINE uint64_t mm_hor_epi64( __m128i v) { v = _mm_or_si128( v, _mm_srli_si128(v, 8)); return (uint64_t )_mm_cvtsi128_si64(v); } //----------------- sub / add ---------------------------------------------------------- #define SUBI16x8(_v_, _sv_) _mm_sub_epi16(_v_, _sv_) #define SUBI32x4(_v_, _sv_) _mm_sub_epi32(_v_, _sv_) #define ADDI16x8(_v_, _sv_, _vi_) _sv_ = _mm_add_epi16(_mm_add_epi16(_sv_, _vi_),_v_) #define ADDI32x4(_v_, _sv_, _vi_) _sv_ = _mm_add_epi32(_mm_add_epi32(_sv_, _vi_),_v_) //---------------- Convert _mm_cvtsi128_siXX ------------------------------------------- static ALWAYS_INLINE uint8_t mm_cvtsi128_si8 (__m128i v) { return (uint8_t )_mm_cvtsi128_si32(v); } static ALWAYS_INLINE uint16_t mm_cvtsi128_si16(__m128i v) { return (uint16_t)_mm_cvtsi128_si32(v); } #define mm_cvtsi128_si32(_v_) _mm_cvtsi128_si32(_v_) #elif defined(__SSE2__) static ALWAYS_INLINE __m128i mm_delta_epi16(__m128i v, __m128i sv) { return _mm_sub_epi16(v, _mm_or_si128(_mm_srli_si128(sv, 14), _mm_slli_si128(v, 2))); } static ALWAYS_INLINE __m128i mm_xore_epi16( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_or_si128(_mm_srli_si128(sv, 14), _mm_slli_si128(v, 2))); } static ALWAYS_INLINE __m128i mm_delta_epi32(__m128i v, __m128i sv) { return _mm_sub_epi32(v, _mm_or_si128(_mm_srli_si128(sv, 12), _mm_slli_si128(v, 4))); } static ALWAYS_INLINE __m128i mm_xore_epi32( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_or_si128(_mm_srli_si128(sv, 12), _mm_slli_si128(v, 4))); } #endif //--------- memset ----------------------------------------- #define BITFORSET_(_out_, _n_, _start_, _mindelta_) do { unsigned _i;\ for(_i = 0; _i != (_n_&~3); _i+=4) { \ _out_[_i+0] = _start_+(_i )*_mindelta_; \ _out_[_i+1] = _start_+(_i+1)*_mindelta_; \ _out_[_i+2] = _start_+(_i+2)*_mindelta_; \ _out_[_i+3] = _start_+(_i+3)*_mindelta_; \ } \ while(_i != _n_) \ _out_[_i] = _start_+_i*_mindelta_, ++_i; \ } while(0) //--------- SIMD zero ----------------------------------------- #ifdef __AVX2__ #define BITZERO32(_out_, _n_, _start_) do {\ __m256i _sv_ = _mm256_set1_epi32(_start_), *_ov = (__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_);\ do _mm256_storeu_si256(_ov++, _sv_); while(_ov < _ove);\ } while(0) #define BITFORZERO32(_out_, _n_, _start_, _mindelta_) do {\ __m256i _sv = _mm256_set1_epi32(_start_), *_ov=(__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_), _cv = _mm256_set_epi32(7+_mindelta_,6+_mindelta_,5+_mindelta_,4+_mindelta_,3*_mindelta_,2*_mindelta_,1*_mindelta_,0); \ _sv = _mm256_add_epi32(_sv, _cv);\ _cv = _mm256_set1_epi32(4);\ do { _mm256_storeu_si256(_ov++, _sv); _sv = _mm256_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #define BITDIZERO32(_out_, _n_, _start_, _mindelta_) do { __m256i _sv = _mm256_set1_epi32(_start_), _cv = _mm256_set_epi32(7+_mindelta_,6+_mindelta_,5+_mindelta_,4+_mindelta_,3+_mindelta_,2+_mindelta_,1+_mindelta_,_mindelta_), *_ov=(__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_);\ _sv = _mm256_add_epi32(_sv, _cv); _cv = _mm256_set1_epi32(4*_mindelta_); do { _mm256_storeu_si256(_ov++, _sv), _sv = _mm256_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #elif defined(__SSE2__) || defined(__ARM_NEON) // ------------- // SIMD set value (memset) #define BITZERO32(_out_, _n_, _v_) do {\ __m128i _sv_ = _mm_set1_epi32(_v_), *_ov = (__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_);\ do _mm_storeu_si128(_ov++, _sv_); while(_ov < _ove); \ } while(0) #define BITFORZERO32(_out_, _n_, _start_, _mindelta_) do {\ __m128i _sv = _mm_set1_epi32(_start_), *_ov=(__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_), _cv = _mm_set_epi32(3*_mindelta_,2*_mindelta_,1*_mindelta_,0); \ _sv = _mm_add_epi32(_sv, _cv);\ _cv = _mm_set1_epi32(4);\ do { _mm_storeu_si128(_ov++, _sv); _sv = _mm_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #define BITDIZERO32(_out_, _n_, _start_, _mindelta_) do { __m128i _sv = _mm_set1_epi32(_start_), _cv = _mm_set_epi32(3+_mindelta_,2+_mindelta_,1+_mindelta_,_mindelta_), *_ov=(__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_);\ _sv = _mm_add_epi32(_sv, _cv); _cv = _mm_set1_epi32(4*_mindelta_); do { _mm_storeu_si128(_ov++, _sv), _sv = _mm_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #else #define BITFORZERO32(_out_, _n_, _start_, _mindelta_) BITFORSET_(_out_, _n_, _start_, _mindelta_) #define BITZERO32( _out_, _n_, _start_) BITFORSET_(_out_, _n_, _start_, 0) #endif #define BITZERO16( _out_, _n_, _start_) BITFORSET_(_out_, _n_, _start_, 0) #define DELTR( _in_, _n_, _start_, _mindelta_, _out_) { unsigned _v; for( _v = 0; _v < _n_; _v++) _out_[_v] = _in_[_v] - (_start_) - _v*(_mindelta_) - (_mindelta_); } #define DELTRB(_in_, _n_, _start_, _mindelta_, _b_, _out_) { unsigned _v; for(_b_=0,_v = 0; _v < _n_; _v++) _out_[_v] = _in_[_v] - (_start_) - _v*(_mindelta_) - (_mindelta_), _b_ |= _out_[_v]; _b_ = bsr32(_b_); } //----------------------------------------- bitreverse scalar + SIMD ------------------------------------------- #if __clang__ && defined __has_builtin #if __has_builtin(__builtin_bitreverse64) #define BUILTIN_BITREVERSE #else #define BUILTIN_BITREVERSE #endif #endif #ifdef BUILTIN_BITREVERSE #define rbit8(x) __builtin_bitreverse8( x) #define rbit16(x) __builtin_bitreverse16(x) #define rbit32(x) __builtin_bitreverse32(x) #define rbit64(x) __builtin_bitreverse64(x) #else #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) static ALWAYS_INLINE uint32_t _rbit_(uint32_t x) { uint32_t rc; __asm volatile ("rbit %0, %1" : "=r" (rc) : "r" (x) ); } #endif static ALWAYS_INLINE uint8_t rbit8(uint8_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return _rbit_(x) >> 24; #elif 0 x = (x & 0xaa) >> 1 | (x & 0x55) << 1; x = (x & 0xcc) >> 2 | (x & 0x33) << 2; return x << 4 | x >> 4; #else return (x * 0x0202020202ull & 0x010884422010ull) % 1023; #endif } static ALWAYS_INLINE uint16_t rbit16(uint16_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return _rbit_(x) >> 16; #else x = (x & 0xaaaa) >> 1 | (x & 0x5555) << 1; x = (x & 0xcccc) >> 2 | (x & 0x3333) << 2; x = (x & 0xf0f0) >> 4 | (x & 0x0f0f) << 4; return x << 8 | x >> 8; #endif } static ALWAYS_INLINE uint32_t rbit32(uint32_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return _rbit_(x); #else x = ((x & 0xaaaaaaaa) >> 1 | (x & 0x55555555) << 1); x = ((x & 0xcccccccc) >> 2 | (x & 0x33333333) << 2); x = ((x & 0xf0f0f0f0) >> 4 | (x & 0x0f0f0f0f) << 4); x = ((x & 0xff00ff00) >> 8 | (x & 0x00ff00ff) << 8); return x << 16 | x >> 16; #endif } static ALWAYS_INLINE uint64_t rbit64(uint64_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return (uint64_t)_rbit_(x) << 32 | _rbit_(x >> 32); #else x = (x & 0xaaaaaaaaaaaaaaaa) >> 1 | (x & 0x5555555555555555) << 1; x = (x & 0xcccccccccccccccc) >> 2 | (x & 0x3333333333333333) << 2; x = (x & 0xf0f0f0f0f0f0f0f0) >> 4 | (x & 0x0f0f0f0f0f0f0f0f) << 4; x = (x & 0xff00ff00ff00ff00) >> 8 | (x & 0x00ff00ff00ff00ff) << 8; x = (x & 0xffff0000ffff0000) >> 16 | (x & 0x0000ffff0000ffff) << 16; return x << 32 | x >> 32; #endif } #endif #if defined(__SSSE3__) || defined(__ARM_NEON) static ALWAYS_INLINE __m128i mm_rbit_epi16(__m128i v) { return mm_rbit_epi8(mm_rev_epi16(v)); } static ALWAYS_INLINE __m128i mm_rbit_epi32(__m128i v) { return mm_rbit_epi8(mm_rev_epi32(v)); } static ALWAYS_INLINE __m128i mm_rbit_epi64(__m128i v) { return mm_rbit_epi8(mm_rev_epi64(v)); } //static ALWAYS_INLINE __m128i mm_rbit_si128(__m128i v) { return mm_rbit_epi8(mm_rev_si128(v)); } #endif #ifdef __AVX2__ static ALWAYS_INLINE __m256i mm256_rbit_epi8(__m256i v) { __m256i fv = _mm256_setr_epi8(0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15, 0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15), cv0f_8 = _mm256_set1_epi8(0xf); __m256i lv = _mm256_shuffle_epi8(fv,_mm256_and_si256( v, cv0f_8)); __m256i hv = _mm256_shuffle_epi8(fv,_mm256_and_si256(_mm256_srli_epi64(v, 4), cv0f_8)); return _mm256_or_si256(_mm256_slli_epi64(lv,4), hv); } static ALWAYS_INLINE __m256i mm256_rev_epi16(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14, 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14)); } static ALWAYS_INLINE __m256i mm256_rev_epi32(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 3, 2, 1, 0, 7, 6, 5, 4, 11,10, 9, 8,15,14,13,12, 3, 2, 1, 0, 7, 6, 5, 4, 11,10, 9, 8,15,14,13,12)); } static ALWAYS_INLINE __m256i mm256_rev_epi64(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8)); } static ALWAYS_INLINE __m256i mm256_rev_si128(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8(15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)); } static ALWAYS_INLINE __m256i mm256_rbit_epi16(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi16(v)); } static ALWAYS_INLINE __m256i mm256_rbit_epi32(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi32(v)); } static ALWAYS_INLINE __m256i mm256_rbit_epi64(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi64(v)); } static ALWAYS_INLINE __m256i mm256_rbit_si128(__m256i v) { return mm256_rbit_epi8(mm256_rev_si128(v)); } #endif // ------------------ bitio general macros --------------------------- #define bitdef( _bw_,_br_) uint64_t _bw_=0; unsigned _br_=0 #define bitini( _bw_,_br_) _bw_=_br_=0 //-- bitput --------- #define bitput( _bw_,_br_,_nb_,_x_) (_bw_) += (uint64_t)(_x_) << (_br_), (_br_) += (_nb_) #define bitenorm( _bw_,_br_,_op_) ctou64(_op_) = _bw_; _op_ += ((_br_)>>3), (_bw_) >>=((_br_)&~7), (_br_) &= 7 #define bitflush( _bw_,_br_,_op_) ctou64(_op_) = _bw_, _op_ += ((_br_)+7)>>3, _bw_=_br_=0 //-- bitget --------- #define bitbw( _bw_,_br_) ((_bw_)>>(_br_)) #define bitrmv( _bw_,_br_,_nb_) (_br_) += _nb_ #define bitdnorm( _bw_,_br_,_ip_) _bw_ = ctou64((_ip_) += ((_br_)>>3)), (_br_) &= 7 #define bitalign( _bw_,_br_,_ip_) ((_ip_) += ((_br_)+7)>>3) #define BITPEEK32( _bw_,_br_,_nb_) BZHI32(bitbw(_bw_,_br_), _nb_) #define BITGET32( _bw_,_br_,_nb_,_x_) _x_ = BITPEEK32(_bw_, _br_, _nb_), bitrmv(_bw_, _br_, _nb_) #define BITPEEK64( _bw_,_br_,_nb_) BZHI64(bitbw(_bw_,_br_), _nb_) #define BITGET64( _bw_,_br_,_nb_,_x_) _x_ = BITPEEK64(_bw_, _br_, _nb_), bitrmv(_bw_, _br_, _nb_) #define bitpeek57( _bw_,_br_,_nb_) bzhi64(bitbw(_bw_,_br_), _nb_) #define bitget57( _bw_,_br_,_nb_,_x_) _x_ = bitpeek57(_bw_, _br_, _nb_), bitrmv(_bw_, _br_, _nb_) #define bitpeek31( _bw_,_br_,_nb_) bzhi32(bitbw(_bw_,_br_), _nb_) #define bitget31( _bw_,_br_,_nb_,_x_) _x_ = bitpeek31(_bw_, _br_, _nb_), bitrmv(_bw_, _br_, _nb_) //------------------ templates ----------------------------------- #define bitput8( _bw_,_br_,_b_,_x_,_op_) bitput(_bw_,_br_,_b_,_x_) #define bitput16(_bw_,_br_,_b_,_x_,_op_) bitput(_bw_,_br_,_b_,_x_) #define bitput32(_bw_,_br_,_b_,_x_,_op_) bitput(_bw_,_br_,_b_,_x_) #define bitput64(_bw_,_br_,_b_,_x_,_op_) if((_b_)>45) { bitput(_bw_,_br_,(_b_)-32, (_x_)>>32); bitenorm(_bw_,_br_,_op_); bitput(_bw_,_br_,32,(unsigned)(_x_)); } else bitput(_bw_,_br_,_b_,_x_) #define bitget8( _bw_,_br_,_b_,_x_,_ip_) bitget31(_bw_,_br_,_b_,_x_) #define bitget16(_bw_,_br_,_b_,_x_,_ip_) bitget31(_bw_,_br_,_b_,_x_) #define bitget32(_bw_,_br_,_b_,_x_,_ip_) bitget57(_bw_,_br_,_b_,_x_) #define bitget64(_bw_,_br_,_b_,_x_,_ip_) if((_b_)>45) { unsigned _v; bitget57(_bw_,_br_,(_b_)-32,_x_); bitdnorm(_bw_,_br_,_ip_); BITGET64(_bw_,_br_,32,_v); _x_ = _x_<<32|_v; } else bitget57(_bw_,_br_,_b_,_x_) //---- Floating point to Integer decomposition --------------------------------- // seeeeeeee21098765432109876543210 (s:sign, e:exponent, 0-9:mantissa) #define MANTF32 23 #define MANTF64 52 #define BITFENC(_u_, _sgn_, _expo_, _mant_, _mantbits_, _one_) _sgn_ = _u_ >> (sizeof(_u_)*8-1); _expo_ = ((_u_ >> (_mantbits_)) & ( (_one_<<(sizeof(_u_)*8 - 1 - _mantbits_)) -1)); _mant_ = _u_ & ((_one_<<_mantbits_)-1); #define BITFDEC( _sgn_, _expo_, _mant_, _u_, _mantbits_) _u_ = (_sgn_) << (sizeof(_u_)*8-1) | (_expo_) << _mantbits_ | (_mant_)