/* * jdlossls.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1998, Thomas G. Lane. * Lossless JPEG Modifications: * Copyright (C) 1999, Ken Murchison. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains prediction, sample undifferencing, point transform, and * sample scaling routines for the lossless JPEG decompressor. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jlossls.h" #ifdef D_LOSSLESS_SUPPORTED /**************** Sample undifferencing (reconstruction) *****************/ /* * In order to avoid a performance penalty for checking which predictor is * being used and which row is being processed for each call of the * undifferencer, and to promote optimization, we have separate undifferencing * functions for each predictor selection value. * * We are able to avoid duplicating source code by implementing the predictors * and undifferencers as macros. Each of the undifferencing functions is * simply a wrapper around an UNDIFFERENCE macro with the appropriate PREDICTOR * macro passed as an argument. */ /* Predictor for the first column of the first row: 2^(P-Pt-1) */ #define INITIAL_PREDICTORx (1 << (cinfo->data_precision - cinfo->Al - 1)) /* Predictor for the first column of the remaining rows: Rb */ #define INITIAL_PREDICTOR2 prev_row[0] /* * 1-Dimensional undifferencer routine. * * This macro implements the 1-D horizontal predictor (1). INITIAL_PREDICTOR * is used as the special case predictor for the first column, which must be * either INITIAL_PREDICTOR2 or INITIAL_PREDICTORx. The remaining samples * use PREDICTOR1. * * The reconstructed sample is supposed to be calculated modulo 2^16, so we * logically AND the result with 0xFFFF. */ #define UNDIFFERENCE_1D(INITIAL_PREDICTOR) \ int Ra; \ \ Ra = (*diff_buf++ + INITIAL_PREDICTOR) & 0xFFFF; \ *undiff_buf++ = Ra; \ \ while (--width) { \ Ra = (*diff_buf++ + PREDICTOR1) & 0xFFFF; \ *undiff_buf++ = Ra; \ } /* * 2-Dimensional undifferencer routine. * * This macro implements the 2-D horizontal predictors (#2-7). PREDICTOR2 is * used as the special case predictor for the first column. The remaining * samples use PREDICTOR, which is a function of Ra, Rb, and Rc. * * Because prev_row and output_buf may point to the same storage area (in an * interleaved image with Vi=1, for example), we must take care to buffer Rb/Rc * before writing the current reconstructed sample value into output_buf. * * The reconstructed sample is supposed to be calculated modulo 2^16, so we * logically AND the result with 0xFFFF. */ #define UNDIFFERENCE_2D(PREDICTOR) \ int Ra, Rb, Rc; \ \ Rb = *prev_row++; \ Ra = (*diff_buf++ + PREDICTOR2) & 0xFFFF; \ *undiff_buf++ = Ra; \ \ while (--width) { \ Rc = Rb; \ Rb = *prev_row++; \ Ra = (*diff_buf++ + PREDICTOR) & 0xFFFF; \ *undiff_buf++ = Ra; \ } /* * Undifferencers for the second and subsequent rows in a scan or restart * interval. The first sample in the row is undifferenced using the vertical * predictor (2). The rest of the samples are undifferenced using the * predictor specified in the scan header. */ METHODDEF(void) jpeg_undifference1(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_1D(INITIAL_PREDICTOR2); } METHODDEF(void) jpeg_undifference2(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_2D(PREDICTOR2); (void)(Rc); } METHODDEF(void) jpeg_undifference3(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_2D(PREDICTOR3); } METHODDEF(void) jpeg_undifference4(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_2D(PREDICTOR4); } METHODDEF(void) jpeg_undifference5(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_2D(PREDICTOR5); } METHODDEF(void) jpeg_undifference6(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_2D(PREDICTOR6); } METHODDEF(void) jpeg_undifference7(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { UNDIFFERENCE_2D(PREDICTOR7); (void)(Rc); } /* * Undifferencer for the first row in a scan or restart interval. The first * sample in the row is undifferenced using the special predictor constant * x=2^(P-Pt-1). The rest of the samples are undifferenced using the * 1-D horizontal predictor (1). */ METHODDEF(void) jpeg_undifference_first_row(j_decompress_ptr cinfo, int comp_index, JDIFFROW diff_buf, JDIFFROW prev_row, JDIFFROW undiff_buf, JDIMENSION width) { lossless_decomp_ptr losslessd = (lossless_decomp_ptr)cinfo->idct; UNDIFFERENCE_1D(INITIAL_PREDICTORx); /* * Now that we have undifferenced the first row, we want to use the * undifferencer that corresponds to the predictor specified in the * scan header. */ switch (cinfo->Ss) { case 1: losslessd->predict_undifference[comp_index] = jpeg_undifference1; break; case 2: losslessd->predict_undifference[comp_index] = jpeg_undifference2; break; case 3: losslessd->predict_undifference[comp_index] = jpeg_undifference3; break; case 4: losslessd->predict_undifference[comp_index] = jpeg_undifference4; break; case 5: losslessd->predict_undifference[comp_index] = jpeg_undifference5; break; case 6: losslessd->predict_undifference[comp_index] = jpeg_undifference6; break; case 7: losslessd->predict_undifference[comp_index] = jpeg_undifference7; break; } } /*********************** Sample upscaling by 2^Pt ************************/ METHODDEF(void) simple_upscale(j_decompress_ptr cinfo, JDIFFROW diff_buf, _JSAMPROW output_buf, JDIMENSION width) { do { *output_buf++ = (_JSAMPLE)(*diff_buf++ << cinfo->Al); } while (--width); } METHODDEF(void) noscale(j_decompress_ptr cinfo, JDIFFROW diff_buf, _JSAMPROW output_buf, JDIMENSION width) { do { *output_buf++ = (_JSAMPLE)(*diff_buf++); } while (--width); } /* * Initialize for an input processing pass. */ METHODDEF(void) start_pass_lossless(j_decompress_ptr cinfo) { lossless_decomp_ptr losslessd = (lossless_decomp_ptr)cinfo->idct; int ci; /* Check that the scan parameters Ss, Se, Ah, Al are OK for lossless JPEG. * * Ss is the predictor selection value (psv). Legal values for sequential * lossless JPEG are: 1 <= psv <= 7. * * Se and Ah are not used and should be zero. * * Al specifies the point transform (Pt). * Legal values are: 0 <= Pt <= (data precision - 1). */ if (cinfo->Ss < 1 || cinfo->Ss > 7 || cinfo->Se != 0 || cinfo->Ah != 0 || cinfo->Al < 0 || cinfo->Al >= cinfo->data_precision) ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Set undifference functions to first row function */ for (ci = 0; ci < cinfo->num_components; ci++) losslessd->predict_undifference[ci] = jpeg_undifference_first_row; /* Set scaler function based on Pt */ if (cinfo->Al) losslessd->scaler_scale = simple_upscale; else losslessd->scaler_scale = noscale; } /* * Initialize the lossless decompressor. */ GLOBAL(void) _jinit_lossless_decompressor(j_decompress_ptr cinfo) { lossless_decomp_ptr losslessd; /* Create subobject in permanent pool */ losslessd = (lossless_decomp_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(jpeg_lossless_decompressor)); cinfo->idct = (struct jpeg_inverse_dct *)losslessd; losslessd->pub.start_pass = start_pass_lossless; } #endif /* D_LOSSLESS_SUPPORTED */