/* * jccolext-neon.c - colorspace conversion (32-bit Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jccolor-neon.c */ /* RGB -> YCbCr conversion is defined by the following equations: * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 * * Avoid floating point arithmetic by using shifted integer constants: * 0.29899597 = 19595 * 2^-16 * 0.58700561 = 38470 * 2^-16 * 0.11399841 = 7471 * 2^-16 * 0.16874695 = 11059 * 2^-16 * 0.33125305 = 21709 * 2^-16 * 0.50000000 = 32768 * 2^-16 * 0.41868592 = 27439 * 2^-16 * 0.08131409 = 5329 * 2^-16 * These constants are defined in jccolor-neon.c * * We add the fixed-point equivalent of 0.5 to Cb and Cr, which effectively * rounds up or down the result via integer truncation. */ void jsimd_rgb_ycc_convert_neon(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { /* Pointer to RGB(X/A) input data */ JSAMPROW inptr; /* Pointers to Y, Cb, and Cr output data */ JSAMPROW outptr0, outptr1, outptr2; /* Allocate temporary buffer for final (image_width % 8) pixels in row. */ ALIGN(16) uint8_t tmp_buf[8 * RGB_PIXELSIZE]; /* Set up conversion constants. */ #ifdef HAVE_VLD1_U16_X2 const uint16x4x2_t consts = vld1_u16_x2(jsimd_rgb_ycc_neon_consts); #else /* GCC does not currently support the intrinsic vld1__x2(). */ const uint16x4_t consts1 = vld1_u16(jsimd_rgb_ycc_neon_consts); const uint16x4_t consts2 = vld1_u16(jsimd_rgb_ycc_neon_consts + 4); const uint16x4x2_t consts = { { consts1, consts2 } }; #endif const uint32x4_t scaled_128_5 = vdupq_n_u32((128 << 16) + 32767); while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; int cols_remaining = image_width; for (; cols_remaining > 0; cols_remaining -= 8) { /* To prevent buffer overread by the vector load instructions, the last * (image_width % 8) columns of data are first memcopied to a temporary * buffer large enough to accommodate the vector load. */ if (cols_remaining < 8) { memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE); inptr = tmp_buf; } #if RGB_PIXELSIZE == 4 uint8x8x4_t input_pixels = vld4_u8(inptr); #else uint8x8x3_t input_pixels = vld3_u8(inptr); #endif uint16x8_t r = vmovl_u8(input_pixels.val[RGB_RED]); uint16x8_t g = vmovl_u8(input_pixels.val[RGB_GREEN]); uint16x8_t b = vmovl_u8(input_pixels.val[RGB_BLUE]); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_low = vmull_lane_u16(vget_low_u16(r), consts.val[0], 0); y_low = vmlal_lane_u16(y_low, vget_low_u16(g), consts.val[0], 1); y_low = vmlal_lane_u16(y_low, vget_low_u16(b), consts.val[0], 2); uint32x4_t y_high = vmull_lane_u16(vget_high_u16(r), consts.val[0], 0); y_high = vmlal_lane_u16(y_high, vget_high_u16(g), consts.val[0], 1); y_high = vmlal_lane_u16(y_high, vget_high_u16(b), consts.val[0], 2); /* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */ uint32x4_t cb_low = scaled_128_5; cb_low = vmlsl_lane_u16(cb_low, vget_low_u16(r), consts.val[0], 3); cb_low = vmlsl_lane_u16(cb_low, vget_low_u16(g), consts.val[1], 0); cb_low = vmlal_lane_u16(cb_low, vget_low_u16(b), consts.val[1], 1); uint32x4_t cb_high = scaled_128_5; cb_high = vmlsl_lane_u16(cb_high, vget_high_u16(r), consts.val[0], 3); cb_high = vmlsl_lane_u16(cb_high, vget_high_u16(g), consts.val[1], 0); cb_high = vmlal_lane_u16(cb_high, vget_high_u16(b), consts.val[1], 1); /* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */ uint32x4_t cr_low = scaled_128_5; cr_low = vmlal_lane_u16(cr_low, vget_low_u16(r), consts.val[1], 1); cr_low = vmlsl_lane_u16(cr_low, vget_low_u16(g), consts.val[1], 2); cr_low = vmlsl_lane_u16(cr_low, vget_low_u16(b), consts.val[1], 3); uint32x4_t cr_high = scaled_128_5; cr_high = vmlal_lane_u16(cr_high, vget_high_u16(r), consts.val[1], 1); cr_high = vmlsl_lane_u16(cr_high, vget_high_u16(g), consts.val[1], 2); cr_high = vmlsl_lane_u16(cr_high, vget_high_u16(b), consts.val[1], 3); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_u16 = vcombine_u16(vrshrn_n_u32(y_low, 16), vrshrn_n_u32(y_high, 16)); /* Descale Cb values (right shift) and narrow to 16-bit. */ uint16x8_t cb_u16 = vcombine_u16(vshrn_n_u32(cb_low, 16), vshrn_n_u32(cb_high, 16)); /* Descale Cr values (right shift) and narrow to 16-bit. */ uint16x8_t cr_u16 = vcombine_u16(vshrn_n_u32(cr_low, 16), vshrn_n_u32(cr_high, 16)); /* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer * overwrite is permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1_u8(outptr0, vmovn_u16(y_u16)); vst1_u8(outptr1, vmovn_u16(cb_u16)); vst1_u8(outptr2, vmovn_u16(cr_u16)); /* Increment pointers. */ inptr += (8 * RGB_PIXELSIZE); outptr0 += 8; outptr1 += 8; outptr2 += 8; } } }