
Retrofitting Typestates into Rust
José Duarte

jmg.duarte@campus.fct.unl.pt
NOVA School of Science and Technology

NOVA LINCS
Portugal, Lisbon

António Ravara
aravara@fct.unl.pt

NOVA School of Science and Technology
NOVA LINCS

Portugal, Lisbon

ABSTRACT
As software permeates our lives, bugs become increasingly expen-
sive; the best way to reduce their cost is to reduce the number of
bugs. Of course, this is easier said than done and, at best, we can
go after their root causes to mitigate them. One of such causes is
state, whether it is the state of a light bulb (i.e. on/off), or the state
of a complex protocol, reasoning about state is a complex process
which developers are required to do with subpar tools.

Ideally, we want to specify constraints and have the computer
reason for us; typestates enable developers to describe states using
the type system and allow the compiler to reason about them.

We propose an approach to bring typestates to Rust, without any
external tools, leveraging only Rust’s type and macro systems. Our
approach provides a macro-based domain-specific language which
enables developers to easily express and implement typestates,
alongwith certain statemachine safety guarantees, it is open-source
and available at https://github.com/rustype/typestate-rs.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Software libraries and repositories; Preprocessors.

KEYWORDS
Behavioral Typing, Domain-specific Languages, Macros, Typestates,
Rust, Session Types, Protocol Compliance
ACM Reference Format:
José Duarte and António Ravara. 2021. Retrofitting Typestates into Rust. In
25th Brazilian Symposium on Programming Languages (SBLP’21), September
27-October 1, 2021, Joinville, Brazil. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3475061.3475082

1 INTRODUCTION
Context. Both as users and developers, we are accustomed to

bugs in the software we use; most of these will be annoying, de-
grading our experience as users; however, in critical software, bugs
are much more impactful, possibly putting the user’s life at risk.

In 2019 and 2020, the Boeing 737 Max was grounded after sev-
eral crashes having been attributed to faulty software1,2,3; more
1https://tinyurl.com/Okane2019
2https://tinyurl.com/Okane2020
3https://tinyurl.com/DCampbell2020

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SBLP’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9062-0/21/09.
https://doi.org/10.1145/3475061.3475082

recently, as COVID-19 cases grew and contact tracing apps were
used to mitigate the virus’ impact, the UK’s National Health Service
app failed to ask users to self-isolate due to a software bug4.

These incidents are not isolated; as software becomes more preva-
lent in our lives, the cost of bugs will inevitably rise. While the
language and nature of bugs differ on a case-by-case basis, there
is no silver bullet and our best alternative is to mitigate them —
building tools and abstractions that enable developers to increase
safety guarantees.

Systems Programming. Unsafe languages like C and C++ have
dominated the systems programming landscape for years, their
biggest strength is also their biggest weakness, the amount of con-
trol offered to the developer. As the popular phrase states — “with
great power, comes great responsibility”; in the case of these unsafe
languages, this means that developers get low-level control over
their systems, even when not required, leading to bugs that may
crash or leave systems vulnerable to malicious attacks.

Being built with safety in mind, Rust addresses memory-related
problems through its ownership system and borrow checker; allow-
ing the developer to be confident that no memory related errors
will arise. However, this is not enough, bugs can also be found in
business logic, protocols and others (e.g. off-by-one errors); cases
outside the borrow checker’s scope.

Typestates, in their most basic form, are finite state machines
described at the type-level [11]. They belong to behavioral types, a
flow-centric approach to static typing [2, 5] and aim to tame stateful
computations. Typestates enable the compiler to reason about state
and by extension, function call ordering.

Consider the light bulb, as a simple state machine; it can either
be on or off, and trying to turn it off twice produces no effect. By
design, light switches forbid us of turning it off twice; when writing
code, the compiler is the light switch, stopping developers from
calling functions at “the wrong time”.

Just like the light switch provides us confidence that no “in-
correct” behavior reaches the bulb, a typestate-enabled compiler
provides developers with ability to restrict certain uses of their
API’s, alleviating developers from the responsibility of bookkeep-
ing their systems’ runtime state during development.

The approach presented in this paper aims to provide a bridge
between typestates and modern Rust, allowing developers to har-
ness the power of typestates and develop software with guarantees
beyond memory safety.

Contributions. The main contribution of this paper consists on a
novel approach to typestates in Rust, which exploits the Rust type
system for typestate checking and relies on its advanced macro
system to generate the necessary boilerplate. Our macro:
4https://tinyurl.com/Mageit2020

https://github.com/rustype/typestate-rs
https://doi.org/10.1145/3475061.3475082
https://tinyurl.com/Okane2019
https://tinyurl.com/Okane2020
https://tinyurl.com/DCampbell2020
https://doi.org/10.1145/3475061.3475082
https://tinyurl.com/Mageit2020

SBLP’21, September 27-October 1, 2021, Joinville, Brazil José Duarte and António Ravara

• Enables the developer to describe typestates in pure Rust.
• Provides state machine related guarantees.
• Emits helpful error messages regarding the guarantees.
This work falls in the “correct by construction” approach to software;
it allows Rust developers to harness the power of typestates, reduce
the number of possible bugs and cut down the time spent debugging
by side-stepping state related bugs.

Structure. We start by demonstrating how one can write type-
states in pure Rust “by hand” and discuss such approach flaws in
Section 2. In Section 3 and Section 4 we give a tour into our tool
in a top-down fashion, from the architecture and syntax down to
the code generation process. In Section 5 we demonstrate our tool
in action through an implemented case study. Section 6 discusses
related work.

2 TYPESTATES, THE HARDWAY
Rust is no stranger to typestates, before the 0.4 release, Rust had
contract-style typestates; currently, The Rust Embedded Book pro-
vides an introduction to typestates in Rust5. Along with several
blogs on the subject6,7, one can safely say that Rust is in fact able
to reason about state at the type level.

2.1 Ingredients
Aliasing control. One of the main obstacles between typestates

and “mainstream” languages is the lack of aliasing control, which
are required to provide state coherence when sharing objects [1].
Consider a multi-threaded environment where a given object is in
a certain state and is shared among several threads; if one of the
threads modifies the state of the object, all other threads will have
an invalid view of the object state. Rust’s ownership system solves
this problem by providing strict aliasing control of objects.

Consider the simple example where a thread is spawned to print
all the vector’s elements:

1 fn main() {

2 let v = vec![1, 2, 3];

3 let handle = std:: thread ::spawn (|| {

4 println!("Here 's a vector: {:?}", v);

5 });

6 handle.join().unwrap ();

7 }

The previous code does not compile since the thread’s closure may
outlive the main function (owner of v), since the thread borrows
v, it could happen while the thread is running, v’s owner dies
and invalidates v. Rust compiler not only provides the previous
explanation, it also provides a solution, which is to prepend the
closure with move, forcing the thread to take ownership of v.

Meta-programmingmechanism. Rust provides programmerswith
the capability to express typestates, by taking advantage of its meta-
programming system (i.e. macros) we can reduce errors through
automation and leverage information embedded in the code. In
Rust, macros come under two flavors, declarative and procedural
macros, we focus on the more powerful procedural macros, which
allow for arbitrary code to be run, thus granting us the possibility of

5https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
6https://yoric.github.io/post/rust-typestate/
7http://cliffle.com/blog/rust-typestate/

extracting information from the code and process it all before com-
pilation. Languages providing equally powerful meta-programming
systems may be able to retrofit typestates into them, following this
approach, provided the rest of the requirements are met.

2.2 The manual approach
We now describe how the manual approach works — consider a
light bulb which has two states: On and Off. Our bulb’s typestate
requirements are simple: methods should not be called out-of-order
and state extension should be forbidden to downstream users. Mod-
elling its typestate in Rust yields8:

1 // The light bulb structure

2 struct LightBulb <State > { state: PhantomData <State > }

3 // Possible states

4 struct On;

5 struct Off;

We now have a light bulb, however, it does nothing yet, and while
it can be constructed “by hand”, we will also write a constructor9.

1 // Functions available to all states

2 impl <State > LightBulb <State > {

3 fn new() -> LightBulb <Off > {

4 LightBulb::<Off > { state: PhantomData }

5 }

6 }

The attentive reader might notice that it makes no sense for the
constructor function, which returns a concrete state, to be imple-
mented using a generic impl. A better alternative would enforce
the type calling new to be of the same type as the returned value
and take advantage of Self.

1 impl LightBulb <Off > {

2 fn new() -> Self {

3 Self { state: PhantomData }

4 }

5 }

This constructor creates a new light bulb, starting in the Off
state. We now need to make the bulb transition between states;
to do so, we define functions just like our constructor — using a
concrete impl.

1 // Functions available in the On state

2 impl LightBulb <On> {

3 fn turn_off(self) -> LightBulb <Off > {

4 LightBulb::<Off > { state: PhantomData }

5 }

6 }

7 // Functions available in the Off state

8 impl LightBulb <Off > {

9 fn turn_on(self) -> LightBulb <On> {

10 LightBulb::<On> { state: PhantomData }

11 }

12 }

Finally, we can start using our bulb. We show an example of a
well-behaved bulb usage:

8PhantomData is a type which pretends that owns a T. See https://doc.rust-lang.org/std/
marker/struct.PhantomData.html. When discussing typestates, the Rust community
will usually use PhantomData for field-less states, being the most common approach
and even the suggested one in The Rust Embedded Book.
9In Rust, one defines the implementation of a structure inside impl blocks. See https:
//doc.rust-lang.org/std/keyword.impl.html for a more detailed description.

https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
https://yoric.github.io/post/rust-typestate/
http://cliffle.com/blog/rust-typestate/
https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/std/keyword.impl.html
https://doc.rust-lang.org/std/keyword.impl.html

Retrofitting Typestates into Rust SBLP’21, September 27-October 1, 2021, Joinville, Brazil

1 fn main() {

2 let bulb = LightBulb::<Off >::new();

3 let bulb = bulb.turn_on ();

4 let _ = bulb.turn_off ();

5 }

If instead of using the bulb as normal, turning it on and off, we
try and turn it on twice, the Rust compiler will issue an error and
let us know that turn_on is not available in the On state.

1 let _ = bulb.turn_off ();

2 | ^^^^^^^^ method not found in

3 | `light_bulb ::LightBulb <light_bulb ::Off >`

2.3 Restricting possible states
One detail the reader might have noticed is that this API can be
freely extended by the client, that is, nothing stops the API client
from adding another state and extending the bulb’s functionality
in unpredictable ways.

We are required to implement the sealed trait pattern10,11, which
instead of requiring types to implement a single trait, requires types
to implement two traits: a private one, unexposed to the client and
a public one which requires the private one to be implemented.
This approach effectively disables the client from implementing the
public trait since it requires a private one to which the user does
not have access.

1 mod private {

2 use super ::{On, Off};

3 pub trait Private {}

4 impl Private for On {}

5 impl Private for Off {}

6 }

7 trait State: private :: Private {}

8 impl State for On {}

9 impl State for Off {}

10 struct LightBulb <S: State > { state: PhantomData <S> }

2.4 Approach Flaws
This approach has two major disadvantages — its verbosity and
lack of guarantees regarding the typestate’s state machine.

Verbosity. Writing a small state machine requires a lot of atten-
tion to detail, the developer cannot forget the sealed traits and
their implementation for every state, along with implementing
each transition to the right state and possible extra functionality.

Guarantees. Unless the user checks the state machine properties
(e.g. if all states are productive) ahead of time by designing the state
machine in a tool built for such purpose, this approach is unable
to provide any kind of guarantees regarding the typestate’s state
machine. This adds overhead to development, since one is required
to design and verify the state machine before writing any code.

3 DESIGNING A PURE RUST TYPESTATE DSL
Our decision to design a DSL is inspired by Fugue [3], which al-
lows to specify finite automata whilst providing some of the usual
guarantees. Its design is based around annotations from which
10Traits define abstract interfaces — for a more detailed description of traits in Rust,
please see https://doc.rust-lang.org/book/ch10-02-traits.html, https://doc.rust-lang.org/
book/ch19-03-advanced-traits.html or https://doc.rust-lang.org/reference/items/traits.
html.
11https://rust-lang.github.io/api-guidelines/future-proofing.html

Typestate
Specification AST

State
Machine

Rust
Code

Parse

Convert

Check: Ok
Check: Error

Figure 1: From DSL specification to Rust code.

properties are inferred and then checked against. Before diving
into the implementation details, we start by discussing our macro
choice, followed by an overview over the DSL architecture.

3.1 Requirements & Macros
We review our DSL’s requirements and explain the reasoning be-
hind our macro pick:
Clear & concise The DSL should allow the user to describe the

typestate in a clear and concise manner.
Useful error messages Pinpointing the offending item and the

reasoning behind the offense.
Simple The DSL’s syntax should be as close to Rust as possible,

avoiding requiring the developer to learn a new language.

Attribute macros. Attachable to most items, attribute macros
allow for the replacement of the input; effectively rewriting the
input source code. As any item in Rust can only be valid Rust
syntax, its input is strictly valid Rust. Taking this into account we
can attach this macro to a module. Since code inside a module is
treated similarly to code written in the top-level of file, we have
most of Rust’s syntax to our disposal to manipulate, effectively
allowing a DSL to be developed using only pure Rust, and used in
a limited scope (the module’s scope).

3.2 Architecture
The architecture of our macro is illustrated in Figure 1; the process
starts with the typestate specification, which is annotated Rust code.
As macros are effectively arbitrary code ran by the compiler, we are
able to process the input token stream and extract a state machine
from the specification. In the case the extracted statemachine passes
all checks, the final Rust code is successfully expanded and the user
is able to continue development.

3.3 Syntax & State Machine Extraction
Wedescribe the DSL’s syntax and how it relates to the statemachine,
starting with the simpler and more obvious aspects of the DSL.

A quick primer on the DSL’s main elements is presented in
Figure 2; the primer covers — the DSL’s entry point, the declaration
of the automaton, its states and transitions, and the declaration of
initial and final states.

To demonstrate the DSL we start by rebuilding the previous light
bulb example (Figure 3) and then extend upon it to demonstrate
the advanced features (Subsection 3.4).

Figure 3 declares the LightBulb structure as the automaton/-
typestated structure through the usage of the automata attribute
(line 2); the automaton’s possible states are then declared using
Rust’s structures and the state attribute — On & Off (lines 3-4);
finally, their functions are declared using the trait keyword fol-
lowed by their respective names; each of the presented functions

https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html
https://doc.rust-lang.org/reference/items/traits.html
https://doc.rust-lang.org/reference/items/traits.html
https://rust-lang.github.io/api-guidelines/future-proofing.html

SBLP’21, September 27-October 1, 2021, Joinville, Brazil José Duarte and António Ravara

1 // The entry point to the DSL

2 #[typestate]

3 mod typestate_dsl {

4 // Only one automaton per typestate specification

5 #[automata] struct Automaton;

6 // N-states are possible

7 #[state] struct StateA;

8 #[state] struct StateB;

9 // Functions are defined inside traits

10 // Traits share their name with an existing structure

11 trait StateA {

12 // Transitions are functions that consume `self `

13 // and return an existing state

14 fn transition(self) -> StateB;

15 // Functions can declare states as initial/final

16 // Initial state declarations do not take `self `

17 fn new() -> StateA;

18 // Final state declarations consume `self ` and

19 // do not return an existing state

20 fn end(self);

21 }

22 }

Figure 2: The main elements for the #[typestate] DSL.

1 #[typestate] mod light_bulb {

2 #[automata] struct LightBulb;

3 #[state] struct On;

4 #[state] struct Off;

5 trait On { fn turn_off(self) -> Off; }

6 trait Off {

7 fn screw() -> Off; // initial state declaration

8 fn unscrew(self); // final state declaration

9 fn turn_on(self) -> On; // Off => On transition

10 }

11 }

Figure 3: The light bulb’s typestate specification.

either declares a transition (lines 5 and 9) or the current state as
being either initial or final (lines 7 and 8).

Transitions, as well as the initial and final states are inferred
from the declared functions, the rules are as follows:
• Transitions are inferred from functions that consume self and
return a state (Figure 2, lines 12-14).

• Initial states are inferred from functions that do not consume
self and return a state (Figure 2, lines 15-17).

• Final states are inferred from functions that consume self and
do not return a state (Figure 2, lines 18-20)

During the specification process, several errors may appear:
• Missing automata declaration.
• Missing initial and/or final states.
• A given state is not productive or useful.

3.4 Advanced Features
We now present the more advanced features; consider now that
we wish to model a smart light bulb. The main difference to our
previous bulb is the ability to change color.

One way of modelling builds on the previous bulb example. We
add the color variable to LightBulb, as it needs to “remember” the
last color the user set. This makes the variable available in all states,
as it is part of the automaton and not a specific state.

1 #[automata] struct SmartBulb { rgb_color: (u8 , u8 , u8) }

However, while it is available in all states, it should not be used
in every state, thus we define a “getter” and a “setter” for it, only in
the On state.

1 trait On {

2 fn turn_off(self) -> Off;

3 fn get_color (&self) -> (u8 , u8 , u8);

4 fn set_color (&mut self , color: (u8 , u8 , u8));

5 }

Notice how the new color functions make use of references
instead of taking ownership; allowing the state to be read and mod-
ified, respectively, without performing an actual state transition.

Finally, consider that our smart light bulb is “not that smart” and
sometimes when we try to change the color, it can fail and turn
itself off. This bifurcates the state transition to either On or Off. To
model this behavior we need to replace the definition of set_color
with the following:

1 fn set_color(self , color: (u8 , u8, u8)) -> Unknown;

Notice that we now consume the state, and we return Unknown12

instead of a concrete state. The compiler will throw an error since
Unknown is undefined, so let’s define it.

1 enum Unknown { On, Off }

We use the enumeration to represent the non-deterministic na-
ture of the transition [12], as well as force the user to match against
both cases. This enumeration has a few rules; all variants must be
of Unit type13, and they must also share their identifier with an
existing state.

Loops & Recursion. Our work supports both recursion and loops;
to disambiguate, consider, once more, the light bulb example: one
can start in the Off state, transition to the On state and back to
the Off state. This process can occur indefinitely and scales to
arbitrarily large state chains.

1 let bulb = LightBulb ::screw();

2 let bulb = bulb.turn_on (); let bulb = bulb.turn_off ();

3 let bulb = bulb.turn_on (); let bulb = bulb.turn_off ();

4 // this pattern might be very long

Loops, do not have such a simple solution, as Rust’s type system
does not allow a variable to change type; for each iteration of the
loop we need to keep the same variable type.

1 let bulb: LightBulb <Off > = LightBulb ::screw();

2 loop {

3 // since `turn_on ` returns `LightBulb <On >`

4 // this will not type check

5 bulb = bulb.turn_on ();

6 }

This constraint makes our state machines very limited; and so,
a standard solution is to declare an enumeration containing all
the possible states. Given that the type is always the same (i.e. the
enumeration’s type), the type checker will be happy, allowing us
to replace the variable in each iteration and when needed, match
against it to take its inner state. Another example can be seen in
Figure 7 and Figure 8.

1 enum Bulb {

2 Off(LightBulb <Off >),

3 On(LightBulb <On >)

4 }

12The identifier Unknown is not special and arbitrary names can be used.
13Unit type variants do not contain information other than their name.

Retrofitting Typestates into Rust SBLP’21, September 27-October 1, 2021, Joinville, Brazil

5 let bulb: Bulb = LightBulb ::screw().into();

6 loop {

7 bulb = match bulb {

8 Bulb::Off(b) => { b.turn_on ().into() }

9 Bulb::On(b) => { b.turn_off ().into() }

10 }

11 }

3.5 Utilities
Along with the already present features, our work also provides
extra features which aim to make developer’s lives easier.

3.5.1 State constructors. This feature generates default construc-
tors for each state with variables; the name of the constructors is
customizable. To use this feature the developer can simply pass an
argument to our macro’s entrypoint.

1 #[typestate(state_constructors)] // default name

2 #[typestate(state_constructors = "new")] // set to "new"

Generated for state structures that have fields, the default identi-
fier for the constructor function is new_state, if a value is attributed
to the state_constructors macro argument, that is used instead.
The function’s parameters are named after each field, by the order
they were written. For the following structure:

1 struct S { f1: u8 , f2: Vec <String > }

The following constructor would be generated:
1 impl S {

2 fn new_state(f1: u8, f2: Vec <String >) -> Self {

3 Self { f1, f2 }

4 }

5 }

3.5.2 State enumeration. This feature generates an enumeration
containing all states, such is useful when dealing with loops or
data structures, where one cannot use multiple types; using an
enumeration allows us to “unify” all states under one type. Similarly
to the previous feature, the developer passes an argument to our
macro’s entrypoint, in this case, the argument represents a prefix
rather than an identifier replacement.

1 #[typestate(enumerate)] // default prefix

2 #[typestate(enumerate = "Enum")] // set to "Enum"

Generated from automaton the states, its default naming behav-
ior is to prepend an E to the automaton identifier; so an automaton
Automaton would generate an enumeration EAutomaton. In the
case the user attributes a value to enumerate, that is used instead.
Along with the enumeration, From traits are implemented for each
type to ease conversion from the typestate to the enumeration.

Revisiting our LightBulb example (Figure 3), with states On and
Off, the following enumeration would be generated:

1 enum ELightBulb {On(LightBulb <On >), Off(LightBulb <Off >)}

3.5.3 Typestate Visualization. While the previous features aim to
make writing code easier, this one aims to allow for state machine
inspection; it takes the form of a library feature14 instead of a macro
argument, allowing users to easily toggle it on and off.

This feature comes under two flavors, exporting DOT files or
PlantUML state diagrams; the files can then be rendered into any
14Library features are declared in the “dependency manifest” and can be toggled on
and off by library clients.

Off

screw

unscrew

On

turn_on turn_off set_color

get_colorset_color

Figure 4: The smart light bulb example rendered from the
exported DOT file.

format supported by the respective tool. A DOT diagram is illus-
trated in Figure 4, and PlantUML diagrams are illustrated in Figure 6
and Figure 10.

When using DOT, the rendered representation is different to the
automata representation.
• Transitions declaring initial states are represented as labeled
directed edges without an origin node (e.g. screw).

• Transitions declaring final states are represented as labeled loops
with a dashed lined (e.g. unscrew).

• Final states have a heavier stroke (e.g. Off).
• Functions using references, as described in Subsection 3.4, are
represented as labeled loops (e.g. get_color).
Our PlantUML representation resembles Deterministic Object

Automata [12], using diamonds to represent the possible outcomes
of an operation.

4 PEEKING BEHIND THE VEIL
As previously stated, our objective is to automate the boilerplate
and provide extra safety guarantees. In this section we describe the
approach taken as to achieve our goals.

4.1 Parsing & code generation
Our macro heavily relies on syn15, a parsing library for Rust’s
TokenStream16; the crate (i.e. library) provides several utilities such
as item parsers and visitor traits17,18.

Parsing is divided into three visitors, each of which can be seen as
“compilation phases”; these visitors implement the syn::VisitMut
trait, allowing us to mutate the AST as we process it, sparing the
work of re-generating the whole tree with modifications.

4.1.1 State visitor. The first pass is performed by the state visitor,
it visits all structures checking for the ones annotated with either
#[automata] or #[state].

The #[automata] annotated structure19 is rewritten adding a
generic State type parameter which is bounded by the sealed trait.
Along the type parameter, a new field is added to the structure
fields; this field has type State instead of PhantomData, enabling
each state to carry data.

15https://docs.rs/syn/1.0.72/syn/
16https://doc.rust-lang.org/stable/proc_macro/struct.TokenStream.html
17https://docs.rs/syn/1.0.72/syn/visit/index.html
18https://docs.rs/syn/1.0.72/syn/visit_mut/index.html
19For each module annotated with #[typestate], only one #[automata] annotated
structure can be defined; otherwise an error is issued.

https://docs.rs/syn/1.0.72/syn/
https://doc.rust-lang.org/stable/proc_macro/struct.TokenStream.html
https://docs.rs/syn/1.0.72/syn/visit/index.html
https://docs.rs/syn/1.0.72/syn/visit_mut/index.html

SBLP’21, September 27-October 1, 2021, Joinville, Brazil José Duarte and António Ravara

Structures annotated with state are not rewritten, but their
identifiers are stored as the next passes are dependent on them.

4.1.2 Non-deterministic transition visitor. This stage checks exist-
ing enumerations; it ensures that each field is of type Unit and
a valid state (i.e. a declared state), if these conditions are met
it rewrites the variant to be of the Unnamed type20, containing
the type of the automaton along with the respective state (e.g.
Automaton<State>).

4.1.3 Transition visitor. Finally, the transition visitor is responsible
for visiting each trait, ensuring its identifier matches a valid state
and extracting transition information from each function (described
in Subsection 3.3 and Subsection 3.4).

A suffix is added to the trait’s name as to avoid name clashes
since structures and traits cannot share the same name in Rust.

Along with transition extraction, the #[must_use] annotation is
added to functions that represent regular transitions (i.e. consume
self and return a valid state), while the annotation alone does
not enforce usage, it provides a warning to the user, which in
turn represents that the protocol has not been completed. The
extracted information is used to generate a graph representing the
automata, see Subsection 4.2 for a detailed explanation of the graph
verification.

4.1.4 Code generation. Along with the described tree mutations,
the macro also performs code generation. The generated code is
composed of helper code (constructors and enumerations, respec-
tively described in subsubsection 3.5.1 and subsubsection 3.5.2) and
the sealed pattern, described in Subsection 2.3.

Sealed Pattern. Implemented according to Rust’s API Guidelines21.
Once more, using the LightBulb example (Figure 3), the gener-
ated22 code would be as follows:

1 mod private { pub trait LightBulbState {} }

2 pub trait LightBulbState: private :: LightBulbState {}

3 impl private :: LightBulbState for On {}

4 impl private :: LightBulbState for Off {}

The private trait implementations are provided outside the mod-
ule to cope with the fact that we do not know which states will be
sealed when generating the private module.

4.2 Typestate, automaton & graph verification
Our tool extracts information from the user’s code, which is then
represented as a directed graph; this graph closely resembles the
one illustrated in Figure 4. The graph structure has been adapted
from the FAdo project [10], the adaptation adds extra fields and
ports the original Python code to Rust.

The first check to be done is the presence of declared initial
and final states, since without either of them, productiveness and
usefulness checkswill always fail; in case such states are not present,
compilation errors are issued.

Afterwards, states are checked for productiveness that is, if all
states have a path to the final state.This is implemented as a breadth-
first search from all final states, as states not visited (i.e. reachable)

20Along with their name, Unnamed type variants contain a single type, without a field
identifier (e.g. EnumVariant(UnnamedFieldType)).
21https://rust-lang.github.io/api-guidelines/future-proofing.html
22The shown code omits some implementation details.

1 error: Non -useful state. For a state to be useful

2 it must first be productive and a path from initial

3 state to the state is required to exist.

4 --> examples/light_bulb.rs :15:21

5 |

6 15 | #[state] struct On;

7 | ^^

Figure 5: Macro error example.

Guest Empty

RetryError

Error

NonEmpty

init

close

add_trip

search_trip

close

login

close

retry

add_trip
search_trip

buy

close

Figure 6: The travel agency’s Session typestate.

when starting from a final state, will not be productive. Similarly,
useful states will be productive states that are reachable from an
initial state, and so it is also implemented as a breadth-first search
starting from the set of initial states. The resulting set of states is
then intersected with the set of productive states.

Any state found to not be productive or useful will trigger a
compilation error, pointing towards that state. Correcting such
error is left to the developer, as allowing the macro to delete them
would not provide a transparent development experience. Similarly,
minimization is not made for the same reasons.

Errors. Along with verification, comes the necessity of commu-
nicating to the user why its typestates are invalid (e.g. lacking an
initial state); Rust’s macro system allows us to provide custom er-
rors to the user and point them to the most relevant token(s). As
an example, if a structure is non-useful, its identifier is underlined
and the error message issued by the compiler (Figure 5).

5 CASE STUDY: TRAVEL AGENCY
To demonstrate #[typestate] in action we have developed a case
study in which we typestate two protocols with communicating
parties. Our example is based on the classic travel agency example
(Figure 6) where a customer buys a ticket from a travel agency, and
the agency sends a transaction to a bank to be processed.

22The full code for this example — https://github.com/rustype/travel-agency

https://rust-lang.github.io/api-guidelines/future-proofing.html
https://github.com/rustype/travel-agency

Retrofitting Typestates into Rust SBLP’21, September 27-October 1, 2021, Joinville, Brazil

1 fn main() -> Result <()> {

2 let mut input_buffer = String ::new();

3 // our session enumeration

4 let mut session = TSession ::new(); // Figure 3

5 loop {

6 // show prompt and read command

7 prompt (&mut input_buffer , &session)?;

8 // parse command

9 let split_input: Vec <_> =

10 input_buffer.trim().split(" ").collect ();

11 if let Some(&cmd) = split_input.first() {

12 // command matching

13 session = match session { /* Listing 5 */ }

14 }

15 }

16 return Ok(());

17 }

Figure 7: The travel agency’s client main function.

1 session = match session {

2 TSession :: Empty(mut s) => match cmd {

3 SEARCH => {

4 if split_input.len() != 2 {

5 println!("invalid search command.");

6 } else {

7 let trips = s.search_trip(split_input [1]);

8 for (i, trip) in trips.iter().enumerate () {

9 println!("{}: {:?}", i, trip);

10 }

11 }; s.into() // return the next state

12 },

13 // the other commands

14 }

Figure 8: The CLI matching procedure.

The client has at its disposal an interactive command line ap-
plication, which uses the agency’s API; before the client is able to
do anything, it is required to log in; afterwards the client is free to
browse the agency’s database and add items to the cart, the client
is unable to perform purchases before adding an item to the cart.

In Figure 7, notice how the session is marked as mutable and is
an enumeration; given that the application runs in a loop, and we
cannot change a variable’s type after declaration, we are required
to use Rust’s enums to unify the automata’s types (line 4).

In Figure 8, the match handling logic first handles each state
(line 1) and then possible commands for that state (line 2). Each
match arm returns the next session state, we take advantage of the
generated From trait to simply call into and perform the conversion
from the state to the enumeration.

Diving deeper into the agency’s typestate we can see how tran-
sitions are performed. Figure 9 demonstrates how the add_trip
operation is implemented. This operation can fail since the added
trip may not be valid, in such case we use the non-deterministic
state transition enumeration and return the possible “intermediate”
states (i.e. Selection’s NonEmpty and Empty).

On the bank’s side, where the agency acts as its client, the type-
state represents a single transaction; the first step is to validate the
information passed by the agency, this operation can fail, and thus
it uses our enumeration approach; in case the information is valid,
the transaction is attempted, failing in case the client does not have
enough funds; in both cases, if the operation fails, a transition to the

1 impl EmptyState for Session <Empty > {

2 fn add_trip(self , idx: usize) -> Selection {

3 println!("{:?}", self.state.last_search);

4 if idx < self.state.last_search.len() {

5 Selection :: NonEmpty(Session::<NonEmpty > {

6 state: NonEmpty {

7 selected:

8 vec![self.state.last_search[idx].clone()],

9 last_search: self.state.last_search ,

10 }, })

11 } else {

12 Selection :: Empty(self)

13 }

14 }

15 }

Figure 9: The EmptyState implementation, showcasing the
usage of an enumeration as return value.

AccountValidation

Error Finish

Valid

start_transaction

finish finish

validate_accounts

perform_transaction

Figure 10: The bank’s Transaction typestate.

Error state occurs where the API closes the transaction by calling
finish. The transaction’s typestate is illustrated in Figure 10.

6 RELATEDWORK
The session-types crate [6], the first to bring session types [4]

into Rust, provides an interpretation of session types and a base for
the work which followed.

The library provides the required abstractions for session types,
but these are built on top of unsafe blocks, which may deter some
users; furthermore, having long Offer/Choice (i.e. session type
constructs) chains becomes normal, leading to complex and verbose
types when the compiler reports errors.The crate offers abstractions
to deal with the previous problems that work when programming
“linearly”, but fail to work when using loops.

The sesh crate [7], in contrast to session-types, builds on a
different theory, provides much cleaner types and embraces Rust’s
affine type system, instead of actively trying to make it linear. While
the crate requires no use of unsafe, it does require a nightly com-
piler, unsuited for production environments.

Like session-types, the sesh crate provides the required ab-
stractions to use session types in Rust, however, the crate’s docu-
mentation is limited, possibly being “inaccessible” to less experi-
enced users w.r.t. Rust and session types.

SBLP’21, September 27-October 1, 2021, Joinville, Brazil José Duarte and António Ravara

The Plaid language, part of the typestate-oriented paradigm, is
an extension of the object paradigm [1]. In typestate-oriented pro-
gramming objects are modeled in terms of classes and changing
states, much like our Rust-based approach.

Besides the new paradigm, one of the distinguishing features
of Plaid is its permission-based type system; this system describes
how an object is shared. Plaid has three keywords to control an
object’s aliasing.
• The unique indicates that an object does not have aliases, similar
to Rust’s mutability constraint, which only allows the object’s
owner to mutate it;

• The immutable allows for unlimited aliasing, but, as the name
dictates, it does not allow any mutation, being similar to Rust’s
immutable references;

• The shared keyword allows mutation through the existing alias,
in contrast with the previous ones. For example, an object in Java
can be mutated through all aliases, at any time, by anyone.

The Mungo project [8, 13], comprises several pieces which work
towards a common and bigger goal, allowing developers to make
use of typestates in languages such as Java.

The toolchain consists of a Java annotation and a typestate de-
scription language along with its checker. The compilation process
starts by typechecking the code according to regular Java and then
using the Mungo toolchain, which reads the typestate protocol
declared by the annotation (@Typestate("ProtocolName")), ex-
tracts the method call behavior and checks the extracted informa-
tion against the typestate [13].

The Mungo toolchain is available online23 and a newer version,
named JATYC is available on GitHub24 [9].

“Fugue is a software checker that allows interface protocols to
be specified as annotations in a library’s source code or in Fugue’s
specification repository” [3]. Similar to our work, Fugue performs
static checks to produce a list of errors and warnings, without
requiring any intervention during runtime.

Fugue allows the developer to specify two types of protocols,
resource and state machine protocols; resource protocols concern
the allocation and release of resources, in Rust this is done by the
ownership system; state machine protocols constrain the order
in which an object’s method can be called: “Given a class with a
state machine protocol, Fugue guarantees that, for all paths in every
analyzed method, the string of method calls made on an instance of
that class is in the language that the finite state machine accepts. This
is called the method order guarantee” [3]. In our work, method call
ordering is enforced through the type system.

Going further, Fugue also allows developers to relate states from
different state machines. Consider state machines � and �, by relat-
ing certain states from� to �, Fugue can ensure� is a well-behaved
client of �.

Along with method call ordering, Fugue also provides more
complex state machine protocols through the use of custom state,
enabling an object’s state to be modelled through another object;
as well as domain-specific checks through predicates. Both features
assign methods to pre and post conditions, these methods are then
invoked during checking to perform state checks and transitions.

23http://www.dcs.gla.ac.uk/research/mungo/
24https://github.com/jdmota/java-typestate-checker

In summary, while all the presented projects present positive
results they also present severe deficiencies. The Plaid language
has been abandoned and the authors moved on to other projects,
furthermore, the produced typestates are scattered around the code
and mentally visualizing the state machine from the code quickly
becomes unfeasible; our approach keeps states and transitions close
together, furthermore we are able to export the specified typestate
allowing the user to visualize the state machine.

One of Mungo’s strengths is also one of its weaknesses, while
being an external tool provides flexibility it comes at the cost of
complicating the compilation process; its feature set and imposition
of linearity over the user also complicate the development of more
complex systems. Our approach is embedded in its target language,
reducing usage complexity; however, likeMungo, we do not support
subtyping and generics.

Regarding Fugue, while its approach using annotations is clever
and elegant, it leaves much to be desired regarding code readability.
Fugue is unavailable (at least for the public). Our approach avoids
this problem by using language constructs to cleanly express the
typestate, instead of relying solely on annotations.

7 CONCLUSION
While Rust provides several improvements over the previous state
of the art regarding memory safety, that is not enough to avoid
runtime errors and thus tools addressing higher-level concerns are
equally necessary to improve software quality.

Our work explores how we can use Rust’s type and macro sys-
tems to provide safer APIs through DSLs. We provide a DSL which
reduces boilerplate when dealing with Rust’s typestates, as well as
bring extra guarantees to the table, which previously, were only
possible if the state machine was processed by an external tool.

Still, this kind of tool is partially limited by the ecosystem; for
instance, rust-analyzer partially flags valid code as errors (as of
writing this paper), which is annoying for a developer using our
tool. Until these problems are addressed, the tool’s adoption can be
impacted due to factors outside our control.

This paper has been written using typestate’s version 0.6 (as of
14/07/2021 the most recent version is 0.8) along with rustc version
1.51 and 1.53 nightly.

Future Work. The issues to address are: (i) evaluate the present
work based on a larger, real-life use case and implement improve-
ments taking into account the evaluation results; (ii) include gener-
ics and subtyping, both in automata and states; (iii) formally define
the checking process, state and prove the key properties envisaged.

Acknowledgements. We thank Bernardo Toninho, Daniel Henry-
Mantilla, JoãoMota,Mathias Jakobsen, Ornela Dardha, PhilipMunks-
gaard, Simon Fowler, Tomás Alagoa and Wen Kokke for their com-
ments on previous versions of this paper, and the reviewers’. This
work is partially supported by NOVA LINCS (UIDB/04516/2020)
with the financial support of FCT.IP and by the EU H2020 RISE
programme under the Marie Skłodowska-Curie grant agreement
No. 778233 (BehAPI).

REFERENCES
[1] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009.

Typestate-oriented programming. In OOPSLA’09. ACM Press, 1015. https://doi.
org/10.1145/1639950.1640073

http://www.dcs.gla.ac.uk/research/mungo/
https://github.com/jdmota/java-typestate-checker
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073

Retrofitting Typestates into Rust SBLP’21, September 27-October 1, 2021, Joinville, Brazil

[2] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,
Pierre Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and
Nobuko Yoshida. 2016. Behavioral types in programming languages. Foundations
and Trends in Programming Languages 3, 2-3 (2016), 95–230. https://doi.org/10.
1561/2500000031

[3] Rob DeLine and Manuel Fahndrich. 2004. The Fugue Protocol
Checker: Is Your Software Baroque? Technical Report MSR-TR-2004-07.
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-
checker-is-your-software-baroque/

[4] Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike Best (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 509–523.

[5] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúis Caires, Mmarco Carbone,
Pierre Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio
Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of
session types and behavioural contracts. Comput. Surveys 49, 1 (2016), 1–36.
https://doi.org/10.1145/2873052

[6] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen.
2015. Session types for rust. In WGP’15, co-located with ICFP. 13–22. https:
//doi.org/10.1145/2808098.2808100

[7] Wen Kokke. 2019. Rusty Variation Deadlock-free Sessions with Failure in Rust.
Electronic Proceedings in Theoretical Computer Science, EPTCS 304 (2019). https:
//doi.org/10.4204/EPTCS.304.4

[8] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 2018. Type-
checking protocols with Mungo and StMungo: A session type toolchain for Java.
Science of Computer Programming 155 (2018), 52–75. https://doi.org/10.1016/j.
scico.2017.10.006

[9] João Mota. 2021. Coping with the reality: adding crucial features to a typestate-
oriented language. Master’s thesis. NOVA School of Science and Technol-
ogy. https://github.com/jdmota/java-typestate-checker/blob/master/docs/msc-
thesis.pdf

[10] Rogério Reis and Nelma Moreira. 2002. FAdo: tools for finite automata and regular
expressions manipulation. Technical Report DCC-2002-02. Universidade do Porto.

[11] Robert E. Strom. 1983. Mechanisms for compile-time enforcement of security.
In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages - POPL ’83. ACM Press, New York, New York, USA,
276–284. https://doi.org/10.1145/567067.567093

[12] André Trindade, João Mota, and Antonio Ravara. 2020. Typestates to automata
and back: A tool. Electronic Proceedings in Theoretical Computer Science, EPTCS
324 (2020). https://doi.org/10.4204/EPTCS.324.4

[13] A. Laura Voinea, Ornela Dardha, and Simon J. Gay. 2020. Typechecking Java Proto-
cols with [St]Mungo. In FORTE’20 (Lecture Notes in Computer Science, Vol. 12136).
Springer, 208–224. https://doi.org/10.1007/978-3-030-50086-3_12

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://github.com/jdmota/java-typestate-checker/blob/master/docs/msc-thesis.pdf
https://github.com/jdmota/java-typestate-checker/blob/master/docs/msc-thesis.pdf
https://doi.org/10.1145/567067.567093
https://doi.org/10.4204/EPTCS.324.4
https://doi.org/10.1007/978-3-030-50086-3_12

	Abstract
	1 Introduction
	2 Typestates, the hard way
	2.1 Ingredients
	2.2 The manual approach
	2.3 Restricting possible states
	2.4 Approach Flaws

	3 Designing a pure Rust typestate DSL
	3.1 Requirements & Macros
	3.2 Architecture
	3.3 Syntax & State Machine Extraction
	3.4 Advanced Features
	3.5 Utilities

	4 Peeking behind the veil
	4.1 Parsing & code generation
	4.2 Typestate, automaton & graph verification

	5 Case Study: Travel Agency
	6 Related Work
	7 Conclusion
	References

