
Packetized, Optionally-Reliable, Orthogonal UDP

Streams (POROUS)

David Petrizze

Revision 0.2 / November 2021

1 Introduction

POROUS is a realtime networking protocol and Rust library, developed pri-
marily for use in online, multiplayer games. It implements a connection-based
layer over UDP that provides ordered delivery of optionally-reliable packets on
a number of virtual channels, ensuring effective use of the network through
channel prioritization and congestion control.

This document serves to present the architecture and particular algorithms
used by POROUS, which is heavily inspired by the library ENet. It is by no
means a full protocol specification, but instead serves to document the system
as a whole, and may be applicable to other domains as well. As the protocol
is still somewhat experimental, various details presented here are subject to
change, although the overarching interface and process should remain stable.

2 Architecture Overview

Fundamentally, POROUS is a unicast, full-duplex, peer-to-peer protocol for
packet exchange between two hosts. An application can send and receive pack-
etized data, specifying whether each packet must be resent until delivered (reli-
able) or be sent once and forgotten (unreliable). By sending packets unreliably,
an application can send time-sensitive data without the overhead of resends,
and by sending packets reliably, the application can rely on efficient, ordered
delivery of data. By carefully placing packets on one of several independent
channels, robust, realtime transfer is made possible in the presence of network
congestion.

To create a POROUS connection, a host object is created and configured
according to the application’s needs. The host object manages connections
to/from remote hosts, each of which send and receive frames (UDP datagrams)
on the host object’s UDP socket. Each connection has an application-specified
number of virtual channels, which represent independent streams of ordered
packets. The application can thus connect/disconnect from remote applications,

1

and send/receive packets on a per-peer basis, specifying who a packet is sent to,
and on which channel a packet is sent.

2.1 Host Objects

In a manner similar to TCP, either host maintains a list of active connections
(peers) with which it may exchange information. A host may accept new con-
nections by creating a peer object upon receipt of a connection request, and
similarly, create a peer object in an attempt to initiate a new connection. The
specific connection procedure used by a peer (see Section 2.3) makes this a
straightforward process which does not require a peer to have special states for
handshaking as a client or server.

Prior to connecting, the host object is configured with any desired connection
parameters. When a peer connects, or when an outbound connection request is
made, connection-critical parameters are sent as part of the initial handshake.
These parameters are then validated against the remote application’s before the
connection is established; incompatible parameters will terminate a connection.

To integrate well with a realtime update loop, and to provide time to receive
out-of-order packets, POROUS is designed to operate on a periodic, step-by-
step basis. Each step, a host object processes all frames received on its (non-
blocking) UDP socket, followed by sending any pending outbound frames. In
order to perform bandwidth estimation and timeouts effectively, it is assumed
that the interval between steps is 1) relatively uniform, and 2) small compared
to the connection’s round-trip time (e.g. one step per 15ms game update for a
75ms round-trip time).

2.2 Peer Objects

A peer object represents a connection to a remote host, communicating directly
with a peer object on the opposite end. A peer may exist in one of 5 states:
connecting, connected, disconnecting, disconnected, and zombie. All peers begin
in the connecting state, and enter the connected state once a connection has
been established, at which point user packets may be transferred. When a peer
wishes to disconnect, it enters the disconnecting state and eventually proceeds
to the disconnected state. After a final timeout, a peer in the disconnected state
enters the zombie state, and is deleted by the host. The possible states of a peer
object are shown in Figure 1.

If a connection handshake fails, or the remote peer requests a disconnect, the
peer enters the disconnected state. Similarly, if no frames are received for some
amount of time, the peer enters the zombie state. The disconnected state exists
to mitigate the side-effects of duplicated frames; a peer in the disconnected
state never re-initializes the connection, and serves to ignore inbound traffic
with the same address/port. Once the connection has timed out, the zombie
state indicates a peer is ready to be deleted.

2

Connecting Connected

Disconnecting

Disconnected

Zombie

Figure 1: The states of a peer object and possible transitions are illustrated.

2.3 Connection Procedure

While in the connecting state, a peer repeatedly sends connection requests at
some interval until a connection acknowledgement has been received. The peer
will enter the connected state once both an acknowledgement, and a compatible
connection request have each been received. In addition, to properly handle
dropped acknowledgements, a peer which is already in the connected state sim-
ply acknowledges any further connection requests. Figure 2 illustrates examples
of this handshake procedure.

Each connection request contains information about various connection de-
tails, such as the protocol version, the number of channels to use, and requested
bandwidth limits. If an incompatible connection request is received, the peer
enters the disconnected state, terminating the would-be connection without no-
tice. Alternatively, the peer may enter the zombie state immediately so as to
minimize the number of peers allocated during a denial-of-service attack.1

In addition to connection parameters, a random ID is exchanged as a part of
the connection handshake. If a connection acknowledgement is received for an
ID which does not match the current request ID, the connection is terminated as
stated previously. This random ID improves robustness to duplicated connection
requests in a manner very similar to TCP, and is also used to initialize the
transfer/receive window described in Section 3.1.1.

In contrast to TCP’s 3-way handshake, the 4-way handshake described here
both eases peer state management, and simplifies frame specifications. Further,
because a 4-way handshake permits peers to connect simultaneously, the con-
nection of applications behind routers performing network address translation
(NAT) is made possible without explicit port forwarding rules. Also known as

1The specifics of denial-of-service protection at the protocol level are to be determined.
However, a proof-of-work mechanism may be of further use here.

3

Connecting

Connected

Connecting

Connected

Connecting

Connected

Connecting

Connected

(a) (b)

Peer A Peer B Peer BPeer A

Figure 2: In (a), Peer A’s connection acknowledgement is dropped, causing Peer B
to later resend its request. Because acknowledgements are sent while in the connected
state, Peer B remains able to connect. In (b), Peer B’s connection request is dropped,
but the handshake continues. Note that in (a), Peer A receives a request followed by
an acknowledgement, but in (b), it receives an acknowledgement followed by a request.

UDP hole punching, this is an appealing feature for non-technical users.

2.4 Data Exchange

Once a peer is in the connected state, user packets may be sent. To accommo-
date a variety of use cases, packets are sent and received per-channel according
to one of three modes: reliable, unreliable, or passive. Reliable packets will be
delivered, unreliable packets may be delivered, and passive packets are resent
until they arrive, but the receiving channel need not stall for their delivery2.

All packets received on a given channel will be delivered to the application in
the order they were sent. If a reliable packet has been dropped, the channel will
cease to deliver packets so as to ensure they are delivered in the correct order.
Because channels are sequenced independently, such a stall for one channel does
not halt the delivery of packets on another —this is a desirable quality for
logically-distinct, realtime data streams. Section 3 details the process by which
user packets are sent and received by a peer.

2.5 Disconnection Procedure

To disconnect, a peer enters the disconnecting state and sends disconnection
requests until an acknowledgement is received, at which point the peer enters
the disconnected state. If a disconnection request is received, a peer in any
state other than disconnected or zombie enters the disconnected state (and

2Skipping packets that will be resent until acknowledged is somewhat inefficient. However,
resends may prove invaluable for time-sensitive packets that arrive in many fragments.

4

acknowledges the request), thereby terminating the connection. In addition, to
properly handle dropped acknowledgements, a peer in the disconnected state will
acknowledge any further disconnection requests. This procedure is illustrated
in Figure 3.

To ensure peer objects expire after disconnecting, a peer in the disconnecting
state always enters the disconnected state after some timeout. Similarly, a peer
in the disconnected state always enters the zombie state after a timeout, regard-
less of any frames it may have received in the meantime. This prevents peer
objects from being kept alive by misbehaving hosts, while effectively ignoring
benign duplicated traffic.

Either peer may disconnect at any time, but for a connected peer, an effort
can be made to ensure any pending packets have been sent prior to discon-
necting. In this case, if a disconnection request is received while such pending
packets are being sent, it is assumed that the remote peer is not interested in
them, and the peer simply disconnects as it would otherwise.

Disconnecting

Disconnected

...

Disconnected

Peer A Peer B

Figure 3: An example disconnection is illustrated. Though the initial acknowledge-
ment has been dropped, further disconnection requests are acknowledged once Peer B
is in the disconnected state.

3 Packet Transmission

The process by which user packets are exchanged between peers is divided into
two layers: the transfer layer, and the sequencing layer. The transfer layer, a
low-level communications layer, provides congestion-controlled and prioritized
message delivery between two peers, optionally resending certain messages un-
til they have been acknowledged. The sequencing layer then employs a queu-
ing/dequeuing scheme over the transfer layer so as to provide ordered and de-
duplicated delivery of packets on independent channels.

The sequencing layer of each peer is comprised of multiple channel objects,
the number of which is negotiated before a connection is established. Messages
sent by one channel object are delivered by the transfer layer to the channel

5

object on the opposite end, forming a virtual, full-duplex connection over which
which user packets may be exchanged. The overall packet transmission process
is illustrated in Figure 4, and the transfer and sequencing layers are described
in the following subsections.

Channel
Channel
Channel

Channel
Channel
Channel

User Packets

User Packets

Messages

Messages

Transfer Layer

Transfer Layer

UDP Frames
Sender

Receiver

Figure 4: User packets are encoded into messages by the sender’s channel objects,
and sent via the transfer layer. Received messages are then decoded by the receiver’s
channel objects, and packets are delivered to the receiving application. Here, filled
arrows represent packet data; thin arrows represent acknowledgements and other sig-
naling.

3.1 Transfer Layer

The transfer layer delivers messages according to reliability (reliable/unreliable)
and channel priority (low/high). Reliable messages are ensured to be delivered
at least once, but no effort is made to sort or to de-duplicate any received
messages. However, the transfer layer does ensure that all messages are sent
subject to a transfer window, and TCP-like3 congestion control.

When a message is to be sent, it is placed in a send queue according to its
priority. When the application wishes to flush pending data, messages are taken
from the front of the send queue and aggregated into data frames, ensuring that
no frame’s size exceeds a maximum transmission unit (MTU). Assembled frames
are then assigned an incrementing sequence ID, sent to the remote peer, and
placed on a local transfer queue, which tracks data currently in-transit. The
frame assembly process is illustrated in Figure 5.

Once a valid data frame has been received, all of its contained messages
are delivered to the corresponding channel, and the sequence ID of the frame
is added to an acknowledgement queue. Sequence IDs in the acknowledgement
queue are aggregated into data acknowledgement frames, and sent to the remote
peer prior to any pending data frames. Once an acknowledgement for a frame
has been received, that frame is removed from the transfer queue.

3POROUS utilizes a slow start + congestion avoidance scheme based on TCP. However,
POROUS is more aggressive in terms of resends and timeouts.

6

To help ensure that received frames are a part of the current connection (and
not, e.g. a delayed, duplicated frame from a previous connection with the same
address/port), frames are restricted by explicit transfer and receive windows.
That is, a sender only sends frames provided they have a sequence ID within
its current transfer window, and likewise, a receiver ignores any received frames
with sequence IDs not present in its receive window. Each peer has a transfer
window synchronized with the opposite peer’s receive window.

Next, to ensure fair use of the network, frames are sent and resent subject to
a dynamic congestion window, measured from the front of the transfer queue.
Frames are only added to the transfer queue provided they will not exceed this
window, and similarly, outstanding frames in the queue are only resent provided
that they exist within this window. Congestion control is then performed by
adjusting the size of this window in an additive-increase, multiplicative-decrease
(AIMD) fashion, thereby regulating the total amount of in-transit data.

1

3

2

0

4

a 0 2 3b 1 c 4

Low
Priority

Message

High
Priority

Message

Frame
Assembly

Available Transfer

Figure 5: Messages numbered 0–4 are enqueued to be sent reliably. Messages 0, 2,
and 3 are marked high priority; they are assembled into frames a and b. Because
messages 1 and 4 are low priority, and because the available space in the congestion
window is limited, frame b is only partially filled, and neither message is sent for now.

3.1.1 Transfer Window

A peer’s transfer window, Pt, is represented by the following modulo range:

Pt = [kb, kb +NP) (mod X), (1)

where kb is a value incremented so as to represent the oldest sequence ID in the
transfer queue (or the next sequence ID to be sent), NP is the transfer window
size, and X is the wrap-around value for frame sequence IDs. Next, the peer’s
receive window, Pr, is given by:

Pr = [ib −NP , ib +NP) (mod X), (2)

where ib is a value set to one past the newest received sequence ID. Specifically,
when a frame is received with a sequence ID k satisfying:

k ∈ [ib, ib +NP) (mod X), (3)

7

the receiver sets ib ← k + 1 mod X.
From here, it can be seen that so long as the sender only sends frames within

its transfer window, the receiver will follow, and because its receive window is
twice as large, all frames in the transfer window may be received independently
of delivery order. An example of this windowing technique for NP = 4 is
illustrated in Figure 6. POROUS tentatively uses NP = 65536, and a 4-byte
sequence ID (i.e. X = 232).

0 1 2 3 4 5 6 7 8

3

Transfer Window

Receive Window

(a)

(b)

Figure 6: An example transfer for NP = 4 is illustrated, where initially, kb = ib = 0.
After frame 3 is received (a), the receiver sets ib ← 4, advancing its receive window
(b). At this point, the receiver may still receive frames 0–2, and once they are removed
from the transfer queue, the sender will advance its transfer window to kb = 4.

3.1.2 Transfer Queue Operation

Once sent, all frames are added to the transfer queue, the total size of which (the
flight size) is tracked in bytes. An acknowledgement is expected for all frames,
and once received, the corresponding frame is removed from the transfer queue.
Each frame added to the transfer queue is marked reliable if it contains any
reliable messages, and otherwise, the frame is marked unreliable.

If a reliable frame is determined to have been dropped (see Section 3.1.5),
any unreliable messages are removed, and the frame is resent. If an unreliable
is considered dropped, it is either a) removed from the transfer queue, or b)
converted into an empty, reliable frame (a sentinel frame) which is subsequently
sent. In any case, the flight size is updated accordingly, thereby freeing up space
in the congestion window.

A dropped, unreliable frame is converted into a sentinel frame if its sequence
ID, k, satisfies:

k mod S = S − 1, (4)

where S, the sentinel frame spacing, is an integer divisor of both NP and X
(defined in the previous section). If (4) is not satisfied, the frame is simply

8

removed from the transfer queue. This sentinel-replacement process ensures a
minimum number of acknowledgements per transfer window, and prevents a full
transfer window from stalling in the event of heavy packet loss. POROUS uses
S = NP /2.

3.1.3 Round-Trip Time Estimation

Ping frames are sent periodically by the transfer layer to measure the connection
round-trip time (RTT), at a maximum rate of once every RTT. Upon receipt of a
ping frame with some sequence ID, a peer sends a ping acknowledgement frame
with the same sequence ID, thereby providing a regular timing mechanism.

The connection will be terminated if no frames are received for a given
interval. Thus, in addition to measuring RTT, regular ping requests serve as
a keepalive mechanism that prevents the connection from timing out in the
event that no packets are sent by the application.4 In addition, pings are sent
separately from the transfer queue, and hence the bandwidth usage of pings
(≈ 30 bytes/RTT) is assumed to be negligible.

Each time a ping is acknowledged, the average connection RTT, Trtt,avg, is
estimated according to RFC 6298 as follows:

Trtt,avg ← 0.875Trtt,avg + 0.125Tping, (5)

where Tping is the elapsed time of the ping, and Trtt,avg is initialized to 200ms.
In addition, the variance of the RTT, Trtt,var is estimated by:

Trtt,var ← 0.75Trtt,var + 0.25 |Trtt,avg − Tping| , (6)

where Trtt,var is initialized to Trtt,avg/2, and this computation is made directly
prior to the computation of Trtt,avg.

Once these quantities have been computed, a resend timeout value, Trto, is
set according to:

Trto ← Trtt,avg + max {Tstep,avg, 4Trtt,var} , (7)

where Tstep,avg is an estimate of the average time between steps. This is identical
to the RTO computation presented in RFC 6298, without the minimum value
of 1s, and with Tstep,avg taking the place of the clock granularity, G.

3.1.4 Congestion Window

The congestion window is updated through a standard slow start and congestion
avoidance scheme, loosely based on CCID 2 of the DCCP protocol (RFC 4341).
Specifically, the method used by POROUS has been adapted to count bytes,
rather than frames, in the transfer queue. An example of this process is shown
in Figure 7.

4It would be possible to measure RTT from data frames and their acknowledgements alone,
although this would still require a separate keepalive mechanism. Nevertheless, data-based
RTT estimation may be selected in the future.

9

First, the congestion window is said to be in slow start if:

Wc ≤Ws, (8)

and is said to be in congestion avoidance otherwise. Here, Wc is the size of
the congestion window in bytes, and Ws is the slow start threshold. (These
correspond to the cwnd and ssthresh values used by TCP, respectively.)

Each time a frame is acknowledged in slow start, the congestion window is
increased according to:

Wc ← min {Wc + MTU, Wr,max} , (9)

where Wr,max is the maximum congestion window size, defined as:

Wr,max = BTrtt,avg. (10)

Here, B is the negotiated maximum transfer bandwidth in bytes/s, and Trtt,avg
is the average RTT computed in (5). The same operation is performed when
the window is in congestion avoidance, but only once for each window of data
acknowledged without encountering dropped packets.

If any frames in the transfer queue are considered dropped, the sender up-
dates:

Wc ← max {Wc/2, MTU} , followed by (11)

Ws ← max {Wc, 2 ·MTU} , (12)

thereby backing off just as TCP would. The sender then sets a timer for Trtt,avg
seconds, and will not back off again until this timer has expired. This treats
closely spaced drops as a single congestion event, and prevents the congestion
window from shrinking excessively during brief periods of packet loss.

3.1.5 Frame Resends and Timeouts

Each frame in the transfer queue maintains a timestamp indicating the last time
it was sent (or resent). If a frame is not acknowledged within Trto seconds after
being sent, it is considered dropped, and the frame is either resent or removed
as described in Section 3.1.2.

Next, if the amount of time between any two frame drops exceeds some
reset interval, and no acknowledgements have been received in the meantime,
the congestion window will be reset. This reset timeout, Trst, is given by:

Trst = ρTrto, (13)

where ρ ≥ 1 is an arbitrary constant. When this timeout is reached, the sender
sets:

Ws ← max {Wc/2, 2 ·MTU} , followed by (14)

Wc ← MTU, (15)

10

0 1

Congestion Window

3

0

Congestion Window

(a)

(b)

6

Congestion Window

(c)

4

5

7

Figure 7: Operation of the transfer queue and congestion window is illustrated. In
(a), frames 3 and 4 are acknowledged, and as a result, frames 0 and 1 are considered
dropped, their unreliable portions are removed, and the congestion window is halved
according to (11). Next, in (b), frame 5 is sent (filling the remaining space in the
congestion window), and the reliable portion of frame 0 is resent. Last, in (c), frames
0 and 5 are both acknowledged, causing the congestion window to increase according
to (9).

so as to back off effectively in the face of high packet loss.
During a period of significant congestion, it can be seen that the choice of ρ

influences how quickly the congestion window will be reset, and also the number
of frames that will be resent in the meantime. POROUS tentatively sets ρ = 8
in order to reasonably balance resend aggression and congestion backoff.

3.2 Sequencing Layer

The sequencing layer is comprised of channel objects, one for each channel of
communication. Each channel object independently delivers user packets to
the channel object on the opposite end of the connection, doing so by sending
messages over the transfer layer. Channel objects ensure that for any given
channel, user packets will be delivered in-order according to one of the three
modes described previously: reliable, unreliable, or passive.

When a packet is sent over a channel, the packet is assigned an incrementing
sequence ID, and sent to the receiving channel object via one or more fragment
messages. Received fragments are then added to the receiving channel object’s
receive queue, which contains packet entries sorted by sequence ID. Once all
fragments for a packet have been received, the packet may be reassembled and
delivered to the receiving application, provided any previous reliable packets
have already been delivered.

11

To ensure no frame exceeds the MTU, packets are fragmented according to
the overhead of frame encoding in the transfer layer, i.e.: fragment size =
MTU - frame header size - message header size. Fragments of reliable and
passive packets are sent reliably over the transfer layer, and unsurprisingly,
the fragments of unreliable packets are sent unreliably. All messages sent by a
channel are sent with high or low priority according to the channel’s own priority,
as this ensures that no packets are skipped due to having been reordered by the
transfer layer.

Next, to differentiate new packets from old, channel objects each maintain a
transfer/receive window similar to those used by the transfer layer. Each time a
receiving channel object consumes a packet from its receive queue, it advances
its receive window, periodically prompting the sender to advance its transfer
window via window acknowledgement messages. To keep this process stall-free,
special, sentinel packet messages are sent alongside the fragments of critical
unreliable packets, allowing the receiver to skip dropped packets and advance
its receive window in all circumstances.

Last, in order to ensure that reliable packets are not skipped, each packet is
marked with an optional dependency : a packet which must be delivered prior
to itself. As packets are sent over a channel, they are marked dependent on the
previously sent reliable packet, and such dependency information is included
with all packet messages. This allows the receiver to stop and wait for the
receipt of reliable packets, should messages be dropped or received out of order.

3.2.1 Channel Transfer Window

A channel object’s transfer window, Qt, is described by the following modulo
range:

Qt = [nb, nb +NQ) (mod Y), (16)

where nb is a value incremented in response to received window acknowledge-
ments, NQ is the size of the transfer window, and Y is the wrap-around value
for packet sequence IDs. A channel object’s receive window, Qr, is similarly
defined by:

Qr = [mb,mb +NQ) (mod Y), (17)

where mb is a value incremented so as to represent the next expected packet
from the sender.

A channel object’s receive window is advanced each time a packet is con-
sumed from its receive queue. That is, whenever a packet with sequence ID
c is consumed, any previous, incomplete queue entries between mb and c are
deleted, and the channel object sets mb ← c+ 1 mod Y , thereby ensuring only
future packets are considered.

Once c has been consumed, if mb is advanced past a sequence id m satisfying:

m mod M = M − 1, (18)

a window acknowledgement containing sequence id m is sent reliably to the
sender, indicating that the receiver’s window now begins at m+1 mod Y . Here,

12

M is known as the window acknowledgement spacing, and it is required that M
be an integer divisor of both NQ and Y .

Once the window acknowledgement has been received, the sender advances
its transfer window by setting nb ← m+ 1 mod Y . To properly ignore old mes-
sages, any window acknowledgement for a sequence ID m that is not contained
by the current transfer window is ignored. Similarly, if the receiver would send
multiple window acknowledgements, only the most recent window acknowledge-
ment must be sent.

It can be seen that this periodic-advancement scheme effectively discerns
new packets from old, and maintains synchronization regardless of underlying
delivery order. Further, it does so with an adjustable (and minimal) signaling
overhead. POROUS tentatively uses NQ = 65536, sets M = NQ/8, and uses
a 3-byte packet sequence ID, i.e. Y = 224. This technique is demonstrated by
Figure 8.

u0

r1

u2

u3

r4

r1

s3

r4

(a)

(b) (c)

(d)

Transfer
Window

Receive
Window

Figure 8: An example transfer is illustrated for NQ = 4 and M = 2. Before the
current state, packets 0–3 were sent, but all unreliable messages were dropped. After
consuming r1, the receiver sent a window acknowledgement (a), advancing the transfer
window to nb = 2. Now that r4 has been received, the receiver will consume it and
send a window acknowledgement (b) for sequence ID 3. (Because the sentinel entry
s3 was not consumed, no window acknowledgement was sent initially.) Afterward, the
receive window will advance to mb = 5 (c), and the transfer window will advance to
nb = 4 (d).

13

3.2.2 Sentinel Packets

For any unreliable packet sent with a sequence ID i satisfying (18), an additional
sentinel packet message is sent reliably, containing the same sequence ID and
dependency as the original packet. When such a sentinel message has been
received for a given packet, but that packet is not complete, the packet may be
consumed (delivering nothing to the application) under the condition that the
newest packet in the receive queue is newer by at least NQ −M sequence IDs.

This condition is rationalized as follows. If an entire transfer window of
unreliable packets has been sent, and all unreliable messages have been dropped,
a minimum of one sentinel packet message for every M sequence IDs will be
received. Thus, NQ/M sentinel entries will eventually exist in the receive queue,
as shown in Figure 9. So, the first sentinel entry will be consumed, the receive
window will advance, and a window acknowledgement will be delivered, thereby
advancing the transfer window in the worst-case scenario.

In addition to preventing a stall, this sentinel consumption mechanism al-
lows unreliable packets to be delivered for some time after their corresponding
sentinel has arrived (up to NQ −M sequence IDs). Assuming the transfer win-
dow is not filled prohibitively quickly, it can be seen that any receipt bias caused
by sentinel packets is mitigated for NQ �M .

s3 s19 s23

Receive Window

Figure 9: A worst-case receive queue state for dropped unreliable packets is illus-
trated for NQ = 24, M = 4, and mb = 1.

3.2.3 Packet Dependencies

Packet dependencies are indicated by the distance in sequence IDs to the prior
packet, and zero if the packet has no dependency. Because the transfer window
already enforces a partial ordering of packets, the dependency value is also set
to zero if it would be greater than or equal to NQ. This allows dependency
identifiers to be encoded with fewer bytes, and further handles sequence ID
wrap-around in an elegant manner. An example illustrating packet dependencies
is shown in Figure 10.

When the application requests received data, the receiver iterates the chan-
nel’s receive queue from front to back, and delivers any complete packets it
encounters. To avoid skipping reliable packets, if any packet entry is found with
a dependency that has not yet been delivered, that packet is not delivered, and
no further entries are considered. Thus, the queue will stall to ensure reliable
packets are always delivered prior to any subsequent packets, for any underlying
message delivery order. By contrast, if a packet marked passive or unreliable

14

u0 r1 u2 r3 p4 p5 u6 u7

Transfer Window Size

Figure 10: Packet dependencies are illustrated for NQ = 4. Reliable, unreliable, and
passive packets are denoted by r, u, and p, respectively. The transfer window ensures
u7 will be delivered after r3, and as a result, r3 is not an explicit dependency of u7.

has not yet arrived, the receiver will readily skip it in the event that newer,
complete packets exist in the queue. An example of this process is illustrated
in Figure 11.

u0 r1 u2 r3 p4 p5 u6 u7

Receive Window

Figure 11: A receive queue and known dependencies are shown for NQ = 4 and
mb = 3. Packets p4 and u6 have been received, both of which depend on r3. Once r3
has been delivered to the application, p4 and u6 may also be delivered, although p5
may be skipped if it arrives after r3.

15

