E1, E2 = basis vectors, geometric multiplication rules: given u and v are basis vectors, uu = 1 uv = -vu want to compute: a b (rotor multiplication, i.e. composition) and a b a* (rotor rotation) where a, b are rotors, a* is reverse of a a = Sa + BaxyE1E2 b = Sb + BbxyE1E2 a* = Sa - BaxyE1E2 ------------- a b = (Sa + BaxyE1E2)(Sb + BbxyE1E2) = SaSb + SaBbxyE1E2 + SbBaxyE1E2 + BaxyBbxyE1E2E1E2 = SaSb - BaxyBbxy + (SaBbxy + SbBaxy)E1E2 ------------- a b a* = (a b)(Sa - BaxyE1E2) = (SaSb - BaxyBbxy + SaBbxyE1E2 + SbBaxyE1E2)(Sa - BaxyE1E2) = SaSaSb - SaSbBaxyE1E2 - SaBaxyBbxy + BaxyBaxyBbxyE1E2 + SaSaBbxyE1E2 - SaBaxyBbxyE1E2E1E2 + SaSbBaxyE1E2 - SbBaxyBaxyE1E2E1E2 = Sa^2Sb - SaBaxyBbxy + SbBaxyBbxy + SbBaxy^2 + (Baxy^2Bbxy - SaSbBaxy + Sa^2Bbxy + SaSbBaxy)E1E2 = (SaSb - BaxyBbxy)Sa + (BaxyBbxy + Baxy^2)Sb + (Baxy^2Bbxy + Sa^2Bbxy)E1E2 = (Sb - Sa)BaxyBbxy + (Sa^2 + Baxy^2)Sb + ((Baxy^2 + Sa^2)Bbxy)E1E1