#!/usr/bin/env python # # Copyright 2011-2018 The Rust Project Developers. See the COPYRIGHT # file at the top-level directory of this distribution and at # http://rust-lang.org/COPYRIGHT. # # Licensed under the Apache License, Version 2.0 or the MIT license # , at your # option. This file may not be copied, modified, or distributed # except according to those terms. # This script uses the following Unicode tables: # - DerivedNormalizationProps.txt # - NormalizationTest.txt # - UnicodeData.txt # # Since this should not require frequent updates, we just store this # out-of-line and check the unicode.rs file into git. import collections import urllib.request UNICODE_VERSION = "9.0.0" UCD_URL = "https://www.unicode.org/Public/%s/ucd/" % UNICODE_VERSION PREAMBLE = """// Copyright 2012-2018 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // NOTE: The following code was generated by "scripts/unicode.py", do not edit directly #![allow(missing_docs)] """ NormalizationTest = collections.namedtuple( "NormalizationTest", ["source", "nfc", "nfd", "nfkc", "nfkd"], ) # Mapping taken from Table 12 from: # http://www.unicode.org/reports/tr44/#General_Category_Values expanded_categories = { 'Lu': ['LC', 'L'], 'Ll': ['LC', 'L'], 'Lt': ['LC', 'L'], 'Lm': ['L'], 'Lo': ['L'], 'Mn': ['M'], 'Mc': ['M'], 'Me': ['M'], 'Nd': ['N'], 'Nl': ['N'], 'No': ['No'], 'Pc': ['P'], 'Pd': ['P'], 'Ps': ['P'], 'Pe': ['P'], 'Pi': ['P'], 'Pf': ['P'], 'Po': ['P'], 'Sm': ['S'], 'Sc': ['S'], 'Sk': ['S'], 'So': ['S'], 'Zs': ['Z'], 'Zl': ['Z'], 'Zp': ['Z'], 'Cc': ['C'], 'Cf': ['C'], 'Cs': ['C'], 'Co': ['C'], 'Cn': ['C'], } class UnicodeData(object): def __init__(self): self._load_unicode_data() self.norm_props = self._load_norm_props() self.norm_tests = self._load_norm_tests() self.canon_comp = self._compute_canonical_comp() self.canon_fully_decomp, self.compat_fully_decomp = self._compute_fully_decomposed() def stats(name, table): count = sum(len(v) for v in table.values()) print("%s: %d chars => %d decomposed chars" % (name, len(table), count)) print("Decomposition table stats:") stats("Canonical decomp", self.canon_decomp) stats("Compatible decomp", self.compat_decomp) stats("Canonical fully decomp", self.canon_fully_decomp) stats("Compatible fully decomp", self.compat_fully_decomp) self.ss_leading, self.ss_trailing = self._compute_stream_safe_tables() def _fetch(self, filename): resp = urllib.request.urlopen(UCD_URL + filename) return resp.read().decode('utf-8') def _load_unicode_data(self): self.combining_classes = {} self.compat_decomp = {} self.canon_decomp = {} self.general_category_mark = [] for line in self._fetch("UnicodeData.txt").splitlines(): # See ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html pieces = line.split(';') assert len(pieces) == 15 char, category, cc, decomp = pieces[0], pieces[2], pieces[3], pieces[5] char_int = int(char, 16) if cc != '0': self.combining_classes[char_int] = cc if decomp.startswith('<'): self.compat_decomp[char_int] = [int(c, 16) for c in decomp.split()[1:]] elif decomp != '': self.canon_decomp[char_int] = [int(c, 16) for c in decomp.split()] if category == 'M' or 'M' in expanded_categories.get(category, []): self.general_category_mark.append(char_int) def _load_norm_props(self): props = collections.defaultdict(list) for line in self._fetch("DerivedNormalizationProps.txt").splitlines(): (prop_data, _, _) = line.partition("#") prop_pieces = prop_data.split(";") if len(prop_pieces) < 2: continue assert len(prop_pieces) <= 3 (low, _, high) = prop_pieces[0].strip().partition("..") prop = prop_pieces[1].strip() data = None if len(prop_pieces) == 3: data = prop_pieces[2].strip() props[prop].append((low, high, data)) return props def _load_norm_tests(self): tests = [] for line in self._fetch("NormalizationTest.txt").splitlines(): (test_data, _, _) = line.partition("#") test_pieces = test_data.split(";") if len(test_pieces) < 5: continue source, nfc, nfd, nfkc, nfkd = [[c.strip() for c in p.split()] for p in test_pieces[:5]] tests.append(NormalizationTest(source, nfc, nfd, nfkc, nfkd)) return tests def _compute_canonical_comp(self): canon_comp = {} comp_exclusions = [ (int(low, 16), int(high or low, 16)) for low, high, _ in self.norm_props["Full_Composition_Exclusion"] ] for char_int, decomp in self.canon_decomp.items(): if any(lo <= char_int <= hi for lo, hi in comp_exclusions): continue assert len(decomp) == 2 assert (decomp[0], decomp[1]) not in canon_comp canon_comp[(decomp[0], decomp[1])] = char_int return canon_comp def _compute_fully_decomposed(self): """ Even though the decomposition algorithm is recursive, it is possible to precompute the recursion at table generation time with modest increase to the table size. Then, for these precomputed tables, we note that 1) compatible decomposition is a subset of canonical decomposition and 2) they mostly agree on their intersection. Therefore, we don't store entries in the compatible table for characters that decompose the same way under canonical decomposition. Decomposition table stats: Canonical decomp: 2060 chars => 3085 decomposed chars Compatible decomp: 3662 chars => 5440 decomposed chars Canonical fully decomp: 2060 chars => 3404 decomposed chars Compatible fully decomp: 3678 chars => 5599 decomposed chars The upshot is that decomposition code is very simple and easy to inline at mild code size cost. """ # Constants from Unicode 9.0.0 Section 3.12 Conjoining Jamo Behavior # http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf#M9.32468.Heading.310.Combining.Jamo.Behavior S_BASE, L_COUNT, V_COUNT, T_COUNT = 0xAC00, 19, 21, 28 S_COUNT = L_COUNT * V_COUNT * T_COUNT def _decompose(char_int, compatible): # 7-bit ASCII never decomposes if char_int <= 0x7f: yield char_int return # Assert that we're handling Hangul separately. assert not (S_BASE <= char_int < S_BASE + S_COUNT) decomp = self.canon_decomp.get(char_int) if decomp is not None: for decomposed_ch in decomp: for fully_decomposed_ch in _decompose(decomposed_ch, compatible): yield fully_decomposed_ch return if compatible and char_int in self.compat_decomp: for decomposed_ch in self.compat_decomp[char_int]: for fully_decomposed_ch in _decompose(decomposed_ch, compatible): yield fully_decomposed_ch return yield char_int return end_codepoint = max( max(self.canon_decomp.keys()), max(self.compat_decomp.keys()), ) canon_fully_decomp = {} compat_fully_decomp = {} for char_int in range(0, end_codepoint + 1): # Always skip Hangul, since it's more efficient to represent its # decomposition programmatically. if S_BASE <= char_int < S_BASE + S_COUNT: continue canon = list(_decompose(char_int, False)) if not (len(canon) == 1 and canon[0] == char_int): canon_fully_decomp[char_int] = canon compat = list(_decompose(char_int, True)) if not (len(compat) == 1 and compat[0] == char_int): compat_fully_decomp[char_int] = compat # Since canon_fully_decomp is a subset of compat_fully_decomp, we don't # need to store their overlap when they agree. When they don't agree, # store the decomposition in the compatibility table since we'll check # that first when normalizing to NFKD. assert set(canon_fully_decomp) <= set(compat_fully_decomp) for ch in set(canon_fully_decomp) & set(compat_fully_decomp): if canon_fully_decomp[ch] == compat_fully_decomp[ch]: del compat_fully_decomp[ch] return canon_fully_decomp, compat_fully_decomp def _compute_stream_safe_tables(self): """ To make a text stream-safe with the Stream-Safe Text Process (UAX15-D4), we need to be able to know the number of contiguous non-starters *after* applying compatibility decomposition to each character. We can do this incrementally by computing the number of leading and trailing non-starters for each character's compatibility decomposition with the following rules: 1) If a character is not affected by compatibility decomposition, look up its canonical combining class to find out if it's a non-starter. 2) All Hangul characters are starters, even under decomposition. 3) Otherwise, very few decomposing characters have a nonzero count of leading or trailing non-starters, so store these characters with their associated counts in a separate table. """ leading_nonstarters = {} trailing_nonstarters = {} for c in set(self.canon_fully_decomp) | set(self.compat_fully_decomp): decomposed = self.compat_fully_decomp.get(c) or self.canon_fully_decomp[c] num_leading = 0 for d in decomposed: if d not in self.combining_classes: break num_leading += 1 num_trailing = 0 for d in reversed(decomposed): if d not in self.combining_classes: break num_trailing += 1 if num_leading > 0: leading_nonstarters[c] = num_leading if num_trailing > 0: trailing_nonstarters[c] = num_trailing return leading_nonstarters, trailing_nonstarters hexify = lambda c: '{:04X}'.format(c) def gen_mph_data(name, d, kv_type, kv_callback): (salt, keys) = minimal_perfect_hash(d) out.write("pub(crate) const %s_SALT: &[u16] = &[\n" % name.upper()) for s in salt: out.write(" 0x{:x},\n".format(s)) out.write("];\n") out.write("pub(crate) const {}_KV: &[{}] = &[\n".format(name.upper(), kv_type)) for k in keys: out.write(" {},\n".format(kv_callback(k))) out.write("];\n\n") def gen_combining_class(combining_classes, out): gen_mph_data('canonical_combining_class', combining_classes, 'u32', lambda k: "0x{:X}".format(int(combining_classes[k]) | (k << 8))) def gen_composition_table(canon_comp, out): table = {} for (c1, c2), c3 in canon_comp.items(): if c1 < 0x10000 and c2 < 0x10000: table[(c1 << 16) | c2] = c3 (salt, keys) = minimal_perfect_hash(table) gen_mph_data('COMPOSITION_TABLE', table, '(u32, char)', lambda k: "(0x%s, '\\u{%s}')" % (hexify(k), hexify(table[k]))) out.write("pub(crate) fn composition_table_astral(c1: char, c2: char) -> Option {\n") out.write(" match (c1, c2) {\n") for (c1, c2), c3 in sorted(canon_comp.items()): if c1 >= 0x10000 and c2 >= 0x10000: out.write(" ('\\u{%s}', '\\u{%s}') => Some('\\u{%s}'),\n" % (hexify(c1), hexify(c2), hexify(c3))) out.write(" _ => None,\n") out.write(" }\n") out.write("}\n") def gen_decomposition_tables(canon_decomp, compat_decomp, out): tables = [(canon_decomp, 'canonical'), (compat_decomp, 'compatibility')] for table, name in tables: gen_mph_data(name + '_decomposed', table, "(u32, &'static [char])", lambda k: "(0x{:x}, &[{}])".format(k, ", ".join("'\\u{%s}'" % hexify(c) for c in table[k]))) def gen_qc_match(prop_table, out): out.write(" match c {\n") for low, high, data in prop_table: assert data in ('N', 'M') result = "No" if data == 'N' else "Maybe" if high: out.write(r" '\u{%s}'...'\u{%s}' => %s," % (low, high, result)) else: out.write(r" '\u{%s}' => %s," % (low, result)) out.write("\n") out.write(" _ => Yes,\n") out.write(" }\n") def gen_nfc_qc(prop_tables, out): out.write("#[inline]\n") out.write("#[allow(ellipsis_inclusive_range_patterns)]\n") out.write("pub fn qc_nfc(c: char) -> IsNormalized {\n") gen_qc_match(prop_tables['NFC_QC'], out) out.write("}\n") def gen_nfkc_qc(prop_tables, out): out.write("#[inline]\n") out.write("#[allow(ellipsis_inclusive_range_patterns)]\n") out.write("pub fn qc_nfkc(c: char) -> IsNormalized {\n") gen_qc_match(prop_tables['NFKC_QC'], out) out.write("}\n") def gen_nfd_qc(prop_tables, out): out.write("#[inline]\n") out.write("#[allow(ellipsis_inclusive_range_patterns)]\n") out.write("pub fn qc_nfd(c: char) -> IsNormalized {\n") gen_qc_match(prop_tables['NFD_QC'], out) out.write("}\n") def gen_nfkd_qc(prop_tables, out): out.write("#[inline]\n") out.write("#[allow(ellipsis_inclusive_range_patterns)]\n") out.write("pub fn qc_nfkd(c: char) -> IsNormalized {\n") gen_qc_match(prop_tables['NFKD_QC'], out) out.write("}\n") def gen_combining_mark(general_category_mark, out): gen_mph_data('combining_mark', general_category_mark, 'u32', lambda k: '0x{:04x}'.format(k)) def gen_stream_safe(leading, trailing, out): # This could be done as a hash but the table is very small. out.write("#[inline]\n") out.write("pub fn stream_safe_leading_nonstarters(c: char) -> usize {\n") out.write(" match c {\n") for char, num_leading in sorted(leading.items()): out.write(" '\\u{%s}' => %d,\n" % (hexify(char), num_leading)) out.write(" _ => 0,\n") out.write(" }\n") out.write("}\n") out.write("\n") gen_mph_data('trailing_nonstarters', trailing, 'u32', lambda k: "0x{:X}".format(int(trailing[k]) | (k << 8))) def gen_tests(tests, out): out.write("""#[derive(Debug)] pub struct NormalizationTest { pub source: &'static str, pub nfc: &'static str, pub nfd: &'static str, pub nfkc: &'static str, pub nfkd: &'static str, } """) out.write("pub const NORMALIZATION_TESTS: &[NormalizationTest] = &[\n") str_literal = lambda s: '"%s"' % "".join("\\u{%s}" % c for c in s) for test in tests: out.write(" NormalizationTest {\n") out.write(" source: %s,\n" % str_literal(test.source)) out.write(" nfc: %s,\n" % str_literal(test.nfc)) out.write(" nfd: %s,\n" % str_literal(test.nfd)) out.write(" nfkc: %s,\n" % str_literal(test.nfkc)) out.write(" nfkd: %s,\n" % str_literal(test.nfkd)) out.write(" },\n") out.write("];\n") # Guaranteed to be less than n. def my_hash(x, salt, n): # This is hash based on the theory that multiplication is efficient mask_32 = 0xffffffff y = ((x + salt) * 2654435769) & mask_32 y ^= (x * 0x31415926) & mask_32 return (y * n) >> 32 # Compute minimal perfect hash function, d can be either a dict or list of keys. def minimal_perfect_hash(d): n = len(d) buckets = dict((h, []) for h in range(n)) for key in d: h = my_hash(key, 0, n) buckets[h].append(key) bsorted = [(len(buckets[h]), h) for h in range(n)] bsorted.sort(reverse = True) claimed = [False] * n salts = [0] * n keys = [0] * n for (bucket_size, h) in bsorted: # Note: the traditional perfect hashing approach would also special-case # bucket_size == 1 here and assign any empty slot, rather than iterating # until rehash finds an empty slot. But we're not doing that so we can # avoid the branch. if bucket_size == 0: break else: for salt in range(1, 32768): rehashes = [my_hash(key, salt, n) for key in buckets[h]] # Make sure there are no rehash collisions within this bucket. if all(not claimed[hash] for hash in rehashes): if len(set(rehashes)) < bucket_size: continue salts[h] = salt for key in buckets[h]: rehash = my_hash(key, salt, n) claimed[rehash] = True keys[rehash] = key break if salts[h] == 0: print("minimal perfect hashing failed") # Note: if this happens (because of unfortunate data), then there are # a few things that could be done. First, the hash function could be # tweaked. Second, the bucket order could be scrambled (especially the # singletons). Right now, the buckets are sorted, which has the advantage # of being deterministic. # # As a more extreme approach, the singleton bucket optimization could be # applied (give the direct address for singleton buckets, rather than # relying on a rehash). That is definitely the more standard approach in # the minimal perfect hashing literature, but in testing the branch was a # significant slowdown. exit(1) return (salts, keys) if __name__ == '__main__': data = UnicodeData() with open("tables.rs", "w", newline = "\n") as out: out.write(PREAMBLE) out.write("use quick_check::IsNormalized;\n") out.write("use quick_check::IsNormalized::*;\n") out.write("\n") version = "(%s, %s, %s)" % tuple(UNICODE_VERSION.split(".")) out.write("#[allow(unused)]\n") out.write("pub const UNICODE_VERSION: (u64, u64, u64) = %s;\n\n" % version) gen_combining_class(data.combining_classes, out) out.write("\n") gen_composition_table(data.canon_comp, out) out.write("\n") gen_decomposition_tables(data.canon_fully_decomp, data.compat_fully_decomp, out) gen_combining_mark(data.general_category_mark, out) out.write("\n") gen_nfc_qc(data.norm_props, out) out.write("\n") gen_nfkc_qc(data.norm_props, out) out.write("\n") gen_nfd_qc(data.norm_props, out) out.write("\n") gen_nfkd_qc(data.norm_props, out) out.write("\n") gen_stream_safe(data.ss_leading, data.ss_trailing, out) out.write("\n") with open("normalization_tests.rs", "w", newline = "\n") as out: out.write(PREAMBLE) gen_tests(data.norm_tests, out)