/* * Physical memory management * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/memory.h" #include "qemu/bitops.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "sysemu/tcg.h" #include "exec/exec-all.h" #include "uc_priv.h" //#define DEBUG_UNASSIGNED void memory_region_transaction_begin(void); void memory_region_transaction_commit(MemoryRegion *mr); typedef struct AddrRange AddrRange; /* * Note that signed integers are needed for negative offsetting in aliases * (large MemoryRegion::alias_offset). */ struct AddrRange { Int128 start; Int128 size; }; // Unicorn engine MemoryRegion *memory_map(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms) { MemoryRegion *ram = g_new(MemoryRegion, 1); memory_region_init_ram(uc, ram, size, perms); if (ram->addr == -1 || !ram->ram_block) { // out of memory g_free(ram); return NULL; } memory_region_add_subregion_overlap(uc->system_memory, begin, ram, uc->snapshot_level); if (uc->cpu) { tlb_flush(uc->cpu); } return ram; } MemoryRegion *memory_map_ptr(struct uc_struct *uc, hwaddr begin, size_t size, uint32_t perms, void *ptr) { MemoryRegion *ram = g_new(MemoryRegion, 1); memory_region_init_ram_ptr(uc, ram, size, ptr); ram->perms = perms; if (ram->addr == -1 || !ram->ram_block) { // out of memory g_free(ram); return NULL; } memory_region_add_subregion(uc->system_memory, begin, ram); if (uc->cpu) { tlb_flush(uc->cpu); } return ram; } static void make_contained(struct uc_struct *uc, MemoryRegion *current) { hwaddr addr = current->addr; MemoryRegion *container = g_new(MemoryRegion, 1); memory_region_init(uc, container, int128_get64(current->size)); memory_region_del_subregion(uc->system_memory, current); memory_region_add_subregion_overlap(container, 0, current, current->priority); memory_region_add_subregion(uc->system_memory, addr, container); } MemoryRegion *memory_cow(struct uc_struct *uc, MemoryRegion *current, hwaddr begin, size_t size) { hwaddr offset; hwaddr current_offset; MemoryRegion *ram = g_new(MemoryRegion, 1); assert((begin & ~TARGET_PAGE_MASK) == 0); assert((size & ~TARGET_PAGE_MASK) == 0); if (current->container == uc->system_memory) { make_contained(uc, current); } offset = begin - current->container->addr;; current_offset = offset - current->addr; memory_region_init_ram(uc, ram, size, current->perms); if (ram->addr == -1 || !ram->ram_block) { g_free(ram); return NULL; } memory_region_transaction_begin(); memcpy(ramblock_ptr(ram->ram_block, 0), ramblock_ptr(current->ram_block, current_offset), size); memory_region_add_subregion_overlap(current->container, offset, ram, uc->snapshot_level); if (uc->cpu) { tlb_flush(uc->cpu); } uc->memory_region_update_pending = true; memory_region_transaction_commit(ram); return ram; } static uint64_t mmio_read_wrapper(struct uc_struct *uc, void *opaque, hwaddr addr, unsigned size) { mmio_cbs* cbs = (mmio_cbs*)opaque; // We have to care about 32bit target. addr = addr & ( (target_ulong)(-1) ); if (cbs->read) { return cbs->read(uc, addr, size, cbs->user_data_read); } else { return 0; } } static void mmio_write_wrapper(struct uc_struct *uc, void *opaque, hwaddr addr, uint64_t data, unsigned size) { mmio_cbs* cbs = (mmio_cbs*)opaque; // We have to care about 32bit target. addr = addr & ( (target_ulong)(-1) ); if (cbs->write) { cbs->write(uc, addr, size, data, cbs->user_data_write); } } static void mmio_region_destructor_uc(MemoryRegion *mr) { g_free(mr->opaque); } MemoryRegion *memory_map_io(struct uc_struct *uc, ram_addr_t begin, size_t size, uc_cb_mmio_read_t read_cb, uc_cb_mmio_write_t write_cb, void *user_data_read, void *user_data_write) { MemoryRegion *mmio = g_new(MemoryRegion, 1); mmio_cbs* opaques = g_new(mmio_cbs, 1); MemoryRegionOps *ops = &opaques->ops; opaques->read = read_cb; opaques->write = write_cb; opaques->user_data_read = user_data_read; opaques->user_data_write = user_data_write; memset(ops, 0, sizeof(*ops)); ops->read = mmio_read_wrapper; ops->read_with_attrs = NULL; ops->write = mmio_write_wrapper; ops->write_with_attrs = NULL; ops->endianness = DEVICE_NATIVE_ENDIAN; memory_region_init_io(uc, mmio, ops, opaques, size); mmio->destructor = mmio_region_destructor_uc; mmio->perms = 0; if (read_cb) mmio->perms |= UC_PROT_READ; if (write_cb) mmio->perms |= UC_PROT_WRITE; memory_region_add_subregion(uc->system_memory, begin, mmio); if (uc->cpu) tlb_flush(uc->cpu); return mmio; } void memory_region_filter_subregions(MemoryRegion *mr, int32_t level) { MemoryRegion *subregion, *subregion_next; memory_region_transaction_begin(); QTAILQ_FOREACH_SAFE(subregion, &mr->subregions, subregions_link, subregion_next) { if (subregion->priority >= level) { memory_region_del_subregion(mr, subregion); subregion->destructor(subregion); g_free(subregion); mr->uc->memory_region_update_pending = true; } } memory_region_transaction_commit(mr); } static void memory_region_remove_mapped_block(struct uc_struct *uc, MemoryRegion *mr, bool free) { size_t i; for (i = 0; i < uc->mapped_block_count; i++) { if (uc->mapped_blocks[i] == mr) { uc->mapped_block_count--; //shift remainder of array down over deleted pointer memmove(&uc->mapped_blocks[i], &uc->mapped_blocks[i + 1], sizeof(MemoryRegion*) * (uc->mapped_block_count - i)); if (free) { mr->destructor(mr); g_free(mr); } break; } } } void memory_moveout(struct uc_struct *uc, MemoryRegion *mr) { hwaddr addr; /* A bit dirty, but it works. * The first subregion will be the one with the smalest priority. * In case of CoW this will always be the region which is mapped initial and later be moved in the subregion of the container. * The initial subregion is the one stored in mapped_blocks * Because CoW is done after the snapshot level is increased there is only on subregion with */ memory_region_transaction_begin(); MemoryRegion *mr_block = QTAILQ_FIRST(&mr->subregions); if (!mr_block) { mr_block = mr; } if (uc->cpu) { // We also need to remove all tb cache uc->uc_invalidate_tb(uc, mr->addr, int128_get64(mr->size)); // Make sure all pages associated with the MemoryRegion are flushed // Only need to do this if we are in a running state for (addr = mr->addr; (int64_t)(mr->end - addr) > 0; addr += uc->target_page_size) { tlb_flush_page(uc->cpu, addr); } } memory_region_del_subregion(uc->system_memory, mr); g_array_append_val(uc->unmapped_regions, mr); memory_region_remove_mapped_block(uc, mr_block, false); uc->memory_region_update_pending = true; memory_region_transaction_commit(uc->system_memory); /* dirty hack to save the snapshot level */ mr->container = (void *)(intptr_t)uc->snapshot_level; } void memory_movein(struct uc_struct *uc, MemoryRegion *mr) { memory_region_transaction_begin(); memory_region_add_subregion_overlap(uc->system_memory, mr->addr, mr, mr->priority); uc->memory_region_update_pending = true; memory_region_transaction_commit(uc->system_memory); } void memory_unmap(struct uc_struct *uc, MemoryRegion *mr) { hwaddr addr; if (uc->cpu) { // We also need to remove all tb cache uc->uc_invalidate_tb(uc, mr->addr, int128_get64(mr->size)); // Make sure all pages associated with the MemoryRegion are flushed // Only need to do this if we are in a running state for (addr = mr->addr; (int64_t)(mr->end - addr) > 0; addr += uc->target_page_size) { tlb_flush_page(uc->cpu, addr); } } memory_region_del_subregion(uc->system_memory, mr); memory_region_remove_mapped_block(uc, mr, true); } int memory_free(struct uc_struct *uc) { MemoryRegion *subregion, *subregion_next; MemoryRegion *mr = uc->system_memory; QTAILQ_FOREACH_SAFE(subregion, &mr->subregions, subregions_link, subregion_next) { subregion->enabled = false; memory_region_del_subregion(uc->system_memory, subregion); subregion->destructor(subregion); /* destroy subregion */ g_free(subregion); } return 0; } static AddrRange addrrange_make(Int128 start, Int128 size) { return (AddrRange) { start, size }; } static bool addrrange_equal(AddrRange r1, AddrRange r2) { return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size); } static Int128 addrrange_end(AddrRange r) { return int128_add(r.start, r.size); } static bool addrrange_contains(AddrRange range, Int128 addr) { return int128_ge(addr, range.start) && int128_lt(addr, addrrange_end(range)); } static bool addrrange_intersects(AddrRange r1, AddrRange r2) { return addrrange_contains(r1, r2.start) || addrrange_contains(r2, r1.start); } static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2) { Int128 start = int128_max(r1.start, r2.start); Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2)); return addrrange_make(start, int128_sub(end, start)); } enum ListenerDirection { Forward, Reverse }; #define MEMORY_LISTENER_CALL_GLOBAL(uc, _callback, _direction) \ do { \ MemoryListener *_listener; \ \ switch (_direction) { \ case Forward: \ QTAILQ_FOREACH(_listener, &uc->memory_listeners, link) { \ if (_listener->_callback) { \ _listener->_callback(_listener); \ } \ } \ break; \ case Reverse: \ QTAILQ_FOREACH_REVERSE(_listener, &uc->memory_listeners, link) { \ if (_listener->_callback) { \ _listener->_callback(_listener); \ } \ } \ break; \ default: \ abort(); \ } \ } while (0) #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section) \ do { \ MemoryListener *_listener; \ \ switch (_direction) { \ case Forward: \ QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \ if (_listener->_callback) { \ _listener->_callback(_listener, _section); \ } \ } \ break; \ case Reverse: \ QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \ if (_listener->_callback) { \ _listener->_callback(_listener, _section); \ } \ } \ break; \ default: \ abort(); \ } \ } while (0) /* No need to ref/unref .mr, the FlatRange keeps it alive. */ #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \ do { \ MemoryRegionSection mrs = section_from_flat_range(fr, \ address_space_to_flatview(as)); \ MEMORY_LISTENER_CALL(as, callback, dir, &mrs); \ } while(0) /* Range of memory in the global map. Addresses are absolute. */ struct FlatRange { MemoryRegion *mr; hwaddr offset_in_region; AddrRange addr; bool readonly; }; #define FOR_EACH_FLAT_RANGE(var, view) \ for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var) static inline MemoryRegionSection section_from_flat_range(FlatRange *fr, FlatView *fv) { return (MemoryRegionSection) { .mr = fr->mr, .fv = fv, .offset_within_region = fr->offset_in_region, .size = fr->addr.size, .offset_within_address_space = int128_get64(fr->addr.start), .readonly = fr->readonly, }; } static bool flatrange_equal(FlatRange *a, FlatRange *b) { return a->mr == b->mr && addrrange_equal(a->addr, b->addr) && a->offset_in_region == b->offset_in_region && a->readonly == b->readonly; } static FlatView *flatview_new(MemoryRegion *mr_root) { FlatView *view; view = g_new0(FlatView, 1); view->ref = 1; view->root = mr_root; return view; } /* Insert a range into a given position. Caller is responsible for maintaining * sorting order. */ static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range) { if (view->nr == view->nr_allocated) { view->nr_allocated = MAX(2 * view->nr, 10); view->ranges = g_realloc(view->ranges, view->nr_allocated * sizeof(*view->ranges)); } memmove(view->ranges + pos + 1, view->ranges + pos, (view->nr - pos) * sizeof(FlatRange)); view->ranges[pos] = *range; ++view->nr; } static inline void flatview_ref(FlatView *view) { view->ref++; } static void flatview_destroy(FlatView *view) { if (view->dispatch) { address_space_dispatch_free(view->dispatch); } g_free(view->ranges); g_free(view); } void flatview_unref(FlatView *view) { view->ref--; if (view->ref <= 0) { flatview_destroy(view); } } static bool can_merge(FlatRange *r1, FlatRange *r2) { return int128_eq(addrrange_end(r1->addr), r2->addr.start) && r1->mr == r2->mr && int128_eq(int128_add(int128_make64(r1->offset_in_region), r1->addr.size), int128_make64(r2->offset_in_region)) && r1->readonly == r2->readonly; } /* Attempt to simplify a view by merging adjacent ranges */ static void flatview_simplify(FlatView *view) { unsigned i, j; i = 0; while (i < view->nr) { j = i + 1; while (j < view->nr && can_merge(&view->ranges[j-1], &view->ranges[j])) { int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size); ++j; } ++i; memmove(&view->ranges[i], &view->ranges[j], (view->nr - j) * sizeof(view->ranges[j])); view->nr -= j - i; } } static bool memory_region_big_endian(MemoryRegion *mr) { #ifdef TARGET_WORDS_BIGENDIAN return mr->ops->endianness != DEVICE_LITTLE_ENDIAN; #else return mr->ops->endianness == DEVICE_BIG_ENDIAN; #endif } static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op) { if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) { switch (op & MO_SIZE) { case MO_8: break; case MO_16: *data = bswap16(*data); break; case MO_32: *data = bswap32(*data); break; case MO_64: *data = bswap64(*data); break; default: g_assert_not_reached(); } } } static inline void memory_region_shift_read_access(uint64_t *value, signed shift, uint64_t mask, uint64_t tmp) { if (shift >= 0) { *value |= (tmp & mask) << shift; } else { *value |= (tmp & mask) >> -shift; } } static inline uint64_t memory_region_shift_write_access(uint64_t *value, signed shift, uint64_t mask) { uint64_t tmp; if (shift >= 0) { tmp = (*value >> shift) & mask; } else { tmp = (*value << -shift) & mask; } return tmp; } static MemTxResult memory_region_read_accessor(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp; tmp = mr->ops->read(uc, mr->opaque, addr, size); memory_region_shift_read_access(value, shift, mask, tmp); return MEMTX_OK; } static MemTxResult memory_region_read_with_attrs_accessor(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = 0; MemTxResult r; r = mr->ops->read_with_attrs(uc, mr->opaque, addr, &tmp, size, attrs); memory_region_shift_read_access(value, shift, mask, tmp); return r; } static MemTxResult memory_region_write_accessor(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = memory_region_shift_write_access(value, shift, mask); mr->ops->write(uc, mr->opaque, addr, tmp, size); return MEMTX_OK; } static MemTxResult memory_region_write_with_attrs_accessor(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = memory_region_shift_write_access(value, shift, mask); return mr->ops->write_with_attrs(uc, mr->opaque, addr, tmp, size, attrs); } static MemTxResult access_with_adjusted_size(struct uc_struct *uc, hwaddr addr, uint64_t *value, unsigned size, unsigned access_size_min, unsigned access_size_max, MemTxResult (*access_fn) (struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs), MemoryRegion *mr, MemTxAttrs attrs) { uint64_t access_mask; unsigned access_size; unsigned i; MemTxResult r = MEMTX_OK; if (!access_size_min) { access_size_min = 1; } if (!access_size_max) { access_size_max = 4; } /* FIXME: support unaligned access? */ access_size = MAX(MIN(size, access_size_max), access_size_min); access_mask = MAKE_64BIT_MASK(0, access_size * 8); if (memory_region_big_endian(mr)) { for (i = 0; i < size; i += access_size) { r |= access_fn(uc, mr, addr + i, value, access_size, (size - access_size - i) * 8, access_mask, attrs); } } else { for (i = 0; i < size; i += access_size) { r |= access_fn(uc, mr, addr + i, value, access_size, i * 8, access_mask, attrs); } } return r; } static AddressSpace *memory_region_to_address_space(MemoryRegion *mr) { AddressSpace *as; while (mr->container) { mr = mr->container; } QTAILQ_FOREACH(as, &mr->uc->address_spaces, address_spaces_link) { if (mr == as->root) { return as; } } return NULL; } /* Render a memory region into the global view. Ranges in @view obscure * ranges in @mr. */ static void render_memory_region(FlatView *view, MemoryRegion *mr, Int128 base, AddrRange clip, bool readonly) { MemoryRegion *subregion; unsigned i; hwaddr offset_in_region; Int128 remain; Int128 now; FlatRange fr; AddrRange tmp; if (!mr->enabled) { return; } int128_addto(&base, int128_make64(mr->addr)); readonly |= mr->readonly; tmp = addrrange_make(base, mr->size); if (!addrrange_intersects(tmp, clip)) { return; } clip = addrrange_intersection(tmp, clip); /* Render subregions in priority order. */ QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) { render_memory_region(view, subregion, base, clip, readonly); } if (!mr->terminates) { return; } offset_in_region = int128_get64(int128_sub(clip.start, base)); base = clip.start; remain = clip.size; fr.mr = mr; fr.readonly = readonly; /* Render the region itself into any gaps left by the current view. */ for (i = 0; i < view->nr && int128_nz(remain); ++i) { if (int128_ge(base, addrrange_end(view->ranges[i].addr))) { continue; } if (int128_lt(base, view->ranges[i].addr.start)) { now = int128_min(remain, int128_sub(view->ranges[i].addr.start, base)); fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, now); flatview_insert(view, i, &fr); ++i; int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } now = int128_sub(int128_min(int128_add(base, remain), addrrange_end(view->ranges[i].addr)), base); int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } if (int128_nz(remain)) { fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, remain); flatview_insert(view, i, &fr); } } static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr) { while (mr->enabled) { if (!mr->terminates) { unsigned int found = 0; MemoryRegion *child, *next = NULL; QTAILQ_FOREACH(child, &mr->subregions, subregions_link) { if (child->enabled) { if (++found > 1) { next = NULL; break; } if (!child->addr && int128_ge(mr->size, child->size)) { /* A child is included in its entirety. If it's the only * enabled one, use it in the hope of finding an alias down the * way. This will also let us share FlatViews. */ next = child; } } } if (found == 0) { return NULL; } if (next) { mr = next; continue; } } return mr; } return NULL; } /* Render a memory topology into a list of disjoint absolute ranges. */ static FlatView *generate_memory_topology(struct uc_struct *uc, MemoryRegion *mr) { int i; FlatView *view; view = flatview_new(mr); if (mr) { render_memory_region(view, mr, int128_zero(), addrrange_make(int128_zero(), int128_2_64()), false); } flatview_simplify(view); view->dispatch = address_space_dispatch_new(uc, view); for (i = 0; i < view->nr; i++) { MemoryRegionSection mrs = section_from_flat_range(&view->ranges[i], view); flatview_add_to_dispatch(uc, view, &mrs); } address_space_dispatch_compact(view->dispatch); g_hash_table_replace(uc->flat_views, mr, view); return view; } FlatView *address_space_get_flatview(AddressSpace *as) { FlatView *view; view = address_space_to_flatview(as); return view; } static void address_space_update_topology_pass(AddressSpace *as, const FlatView *old_view, const FlatView *new_view, bool adding) { unsigned iold, inew; FlatRange *frold, *frnew; /* Generate a symmetric difference of the old and new memory maps. * Kill ranges in the old map, and instantiate ranges in the new map. */ iold = inew = 0; while (iold < old_view->nr || inew < new_view->nr) { if (iold < old_view->nr) { frold = &old_view->ranges[iold]; } else { frold = NULL; } if (inew < new_view->nr) { frnew = &new_view->ranges[inew]; } else { frnew = NULL; } if (frold && (!frnew || int128_lt(frold->addr.start, frnew->addr.start) || (int128_eq(frold->addr.start, frnew->addr.start) && !flatrange_equal(frold, frnew)))) { /* In old but not in new, or in both but attributes changed. */ if (!adding) { MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del); } ++iold; } else if (frold && frnew && flatrange_equal(frold, frnew)) { /* In both and unchanged (except logging may have changed) */ if (adding) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop); } ++iold; ++inew; } else { /* In new */ if (adding) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add); } ++inew; } } } static void flatviews_init(struct uc_struct *uc) { if (uc->flat_views) { return; } uc->flat_views = g_hash_table_new_full(NULL, NULL, NULL, (GDestroyNotify) flatview_unref); if (!uc->empty_view) { uc->empty_view = generate_memory_topology(uc, NULL); /* We keep it alive forever in the global variable. */ flatview_ref(uc->empty_view); g_hash_table_replace(uc->flat_views, NULL, uc->empty_view); } } static void flatviews_reset(struct uc_struct *uc) { AddressSpace *as; if (uc->flat_views) { g_hash_table_destroy(uc->flat_views); uc->flat_views = NULL; } flatviews_init(uc); /* Render unique FVs */ QTAILQ_FOREACH(as, &uc->address_spaces, address_spaces_link) { MemoryRegion *physmr = memory_region_get_flatview_root(as->root); if (g_hash_table_lookup(uc->flat_views, physmr)) { continue; } generate_memory_topology(uc, physmr); } } static void address_space_set_flatview(AddressSpace *as) { FlatView *old_view = address_space_to_flatview(as); MemoryRegion *physmr = memory_region_get_flatview_root(as->root); FlatView *new_view = g_hash_table_lookup(as->uc->flat_views, physmr); assert(new_view); if (old_view == new_view) { return; } flatview_ref(new_view); if (!QTAILQ_EMPTY(&as->listeners)) { FlatView tmpview = { .nr = 0 }, *old_view2 = old_view; if (!old_view2) { old_view2 = &tmpview; } address_space_update_topology_pass(as, old_view2, new_view, false); address_space_update_topology_pass(as, old_view2, new_view, true); } as->current_map = new_view; if (old_view) { flatview_unref(old_view); } } static void address_space_update_topology(AddressSpace *as) { MemoryRegion *physmr = memory_region_get_flatview_root(as->root); flatviews_init(as->uc); if (!g_hash_table_lookup(as->uc->flat_views, physmr)) { generate_memory_topology(as->uc, physmr); } address_space_set_flatview(as); } void memory_region_transaction_begin(void) { } void memory_region_transaction_commit(MemoryRegion *mr) { AddressSpace *as; if (mr->uc->memory_region_update_pending) { flatviews_reset(mr->uc); MEMORY_LISTENER_CALL_GLOBAL(mr->uc, begin, Forward); QTAILQ_FOREACH(as, &mr->uc->address_spaces, address_spaces_link) { address_space_set_flatview(as); } mr->uc->memory_region_update_pending = false; MEMORY_LISTENER_CALL_GLOBAL(mr->uc, commit, Forward); } } static void memory_region_destructor_none(MemoryRegion *mr) { } static void memory_region_destructor_ram(MemoryRegion *mr) { memory_region_filter_subregions(mr, 0); qemu_ram_free(mr->uc, mr->ram_block); } void memory_region_init(struct uc_struct *uc, MemoryRegion *mr, uint64_t size) { memset(mr, 0, sizeof(*mr)); mr->uc = uc; /* memory_region_initfn */ mr->ops = &unassigned_mem_ops; mr->enabled = true; mr->destructor = memory_region_destructor_none; QTAILQ_INIT(&mr->subregions); mr->size = int128_make64(size); if (size == UINT64_MAX) { mr->size = int128_2_64(); } } static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, unsigned size) { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); #endif return 0; } static void unassigned_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); #endif } static bool unassigned_mem_accepts(struct uc_struct *uc, void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return false; } const MemoryRegionOps unassigned_mem_ops = { .valid.accepts = unassigned_mem_accepts, .endianness = DEVICE_NATIVE_ENDIAN, }; bool memory_region_access_valid(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { if (mr->ops->valid.accepts && !mr->ops->valid.accepts(uc, mr->opaque, addr, size, is_write, attrs)) { return false; } if (!mr->ops->valid.unaligned && (addr & (size - 1))) { return false; } /* Treat zero as compatibility all valid */ if (!mr->ops->valid.max_access_size) { return true; } if (size > mr->ops->valid.max_access_size || size < mr->ops->valid.min_access_size) { return false; } return true; } static MemTxResult memory_region_dispatch_read1(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size, MemTxAttrs attrs) { *pval = 0; if (mr->ops->read) { return access_with_adjusted_size(uc, addr, pval, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_accessor, mr, attrs); } else { return access_with_adjusted_size(uc, addr, pval, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_with_attrs_accessor, mr, attrs); } } MemTxResult memory_region_dispatch_read(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t *pval, MemOp op, MemTxAttrs attrs) { unsigned size = memop_size(op); MemTxResult r; if (!memory_region_access_valid(uc, mr, addr, size, false, attrs)) { *pval = unassigned_mem_read(mr, addr, size); return MEMTX_DECODE_ERROR; } r = memory_region_dispatch_read1(uc, mr, addr, pval, size, attrs); adjust_endianness(mr, pval, op); return r; } MemTxResult memory_region_dispatch_write(struct uc_struct *uc, MemoryRegion *mr, hwaddr addr, uint64_t data, MemOp op, MemTxAttrs attrs) { unsigned size = memop_size(op); if (!memory_region_access_valid(uc, mr, addr, size, true, attrs)) { unassigned_mem_write(mr, addr, data, size); return MEMTX_DECODE_ERROR; } adjust_endianness(mr, &data, op); if (mr->ops->write) { return access_with_adjusted_size(uc, addr, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_accessor, mr, attrs); } else { return access_with_adjusted_size(uc, addr, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_with_attrs_accessor, mr, attrs); } } void memory_region_init_io(struct uc_struct *uc, MemoryRegion *mr, const MemoryRegionOps *ops, void *opaque, uint64_t size) { memory_region_init(uc, mr, size); mr->ops = ops ? ops : &unassigned_mem_ops; mr->opaque = opaque; mr->terminates = true; } void memory_region_init_ram_ptr(struct uc_struct *uc, MemoryRegion *mr, uint64_t size, void *ptr) { memory_region_init(uc, mr, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ assert(ptr != NULL); mr->ram_block = qemu_ram_alloc_from_ptr(uc, size, ptr, mr); } uint64_t memory_region_size(MemoryRegion *mr) { if (int128_eq(mr->size, int128_2_64())) { return UINT64_MAX; } return int128_get64(mr->size); } void memory_region_set_readonly(MemoryRegion *mr, bool readonly) { if (mr->readonly != readonly) { memory_region_transaction_begin(); mr->readonly = readonly; mr->uc->memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(mr); } } void *memory_region_get_ram_ptr(MemoryRegion *mr) { void *ptr; ptr = qemu_map_ram_ptr(mr->uc, mr->ram_block, 0); return ptr; } MemoryRegion *memory_region_from_host(struct uc_struct *uc, void *ptr, ram_addr_t *offset) { RAMBlock *block; block = qemu_ram_block_from_host(uc, ptr, false, offset); if (!block) { return NULL; } return block->mr; } ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr) { return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID; } static void memory_region_update_container_subregions(MemoryRegion *subregion) { MemoryRegion *mr = subregion->container; MemoryRegion *other; memory_region_transaction_begin(); QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->priority >= other->priority) { QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); goto done; } } QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); done: mr->uc->memory_region_update_pending = true; memory_region_transaction_commit(mr); } static void memory_region_add_subregion_common(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { assert(!subregion->container); subregion->container = mr; subregion->addr = offset; subregion->end = offset + int128_get64(subregion->size); memory_region_update_container_subregions(subregion); } void memory_region_add_subregion(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { subregion->priority = 0; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_add_subregion_overlap(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion, int priority) { subregion->priority = priority; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_del_subregion(MemoryRegion *mr, MemoryRegion *subregion) { memory_region_transaction_begin(); assert(subregion->container == mr); subregion->container = NULL; QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link); mr->uc->memory_region_update_pending = true; memory_region_transaction_commit(mr); } static int cmp_flatrange_addr(const void *addr_, const void *fr_) { const AddrRange *addr = addr_; const FlatRange *fr = fr_; if (int128_le(addrrange_end(*addr), fr->addr.start)) { return -1; } else if (int128_ge(addr->start, addrrange_end(fr->addr))) { return 1; } return 0; } static FlatRange *flatview_lookup(FlatView *view, AddrRange addr) { return bsearch(&addr, view->ranges, view->nr, sizeof(FlatRange), cmp_flatrange_addr); } /* Same as memory_region_find, but it does not add a reference to the * returned region. It must be called from an RCU critical section. */ static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr, hwaddr addr, uint64_t size) { MemoryRegionSection ret = { .mr = NULL }; MemoryRegion *root; AddressSpace *as; AddrRange range; FlatView *view; FlatRange *fr; addr += mr->addr; for (root = mr; root->container; ) { root = root->container; addr += root->addr; } as = memory_region_to_address_space(root); if (!as) { return ret; } range = addrrange_make(int128_make64(addr), int128_make64(size)); view = address_space_to_flatview(as); fr = flatview_lookup(view, range); if (!fr) { return ret; } while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) { --fr; } ret.mr = fr->mr; ret.fv = view; range = addrrange_intersection(range, fr->addr); ret.offset_within_region = fr->offset_in_region; ret.offset_within_region += int128_get64(int128_sub(range.start, fr->addr.start)); ret.size = range.size; ret.offset_within_address_space = int128_get64(range.start); ret.readonly = fr->readonly; return ret; } MemoryRegionSection memory_region_find(MemoryRegion *mr, hwaddr addr, uint64_t size) { MemoryRegionSection ret; ret = memory_region_find_rcu(mr, addr, size); return ret; } static void listener_add_address_space(MemoryListener *listener, AddressSpace *as) { FlatView *view; FlatRange *fr; if (listener->begin) { listener->begin(listener); } view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { MemoryRegionSection section = section_from_flat_range(fr, view); if (listener->region_add) { listener->region_add(listener, §ion); } } if (listener->commit) { listener->commit(listener); } } static void listener_del_address_space(MemoryListener *listener, AddressSpace *as) { FlatView *view; FlatRange *fr; if (listener->begin) { listener->begin(listener); } view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { MemoryRegionSection section = section_from_flat_range(fr, view); if (listener->region_del) { listener->region_del(listener, §ion); } } if (listener->commit) { listener->commit(listener); } } void memory_listener_register(MemoryListener *listener, AddressSpace *as) { listener->address_space = as; QTAILQ_INSERT_TAIL(&as->uc->memory_listeners, listener, link); QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as); listener_add_address_space(listener, as); } void memory_listener_unregister(MemoryListener *listener) { if (!listener->address_space) { return; } listener_del_address_space(listener, listener->address_space); QTAILQ_REMOVE(&listener->address_space->uc->memory_listeners, listener, link); QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as); listener->address_space = NULL; } void address_space_remove_listeners(AddressSpace *as) { while (!QTAILQ_EMPTY(&as->listeners)) { memory_listener_unregister(QTAILQ_FIRST(&as->listeners)); } } void address_space_init(struct uc_struct *uc, AddressSpace *as, MemoryRegion *root) { as->uc = uc; as->root = root; as->current_map = NULL; QTAILQ_INIT(&as->listeners); QTAILQ_INSERT_TAIL(&uc->address_spaces, as, address_spaces_link); address_space_update_topology(as); } void address_space_destroy(AddressSpace *as) { MemoryRegion *root = as->root; /* Flush out anything from MemoryListeners listening in on this */ memory_region_transaction_begin(); as->root = NULL; memory_region_transaction_commit(root); QTAILQ_REMOVE(&as->uc->address_spaces, as, address_spaces_link); /* At this point, as->dispatch and as->current_map are dummy * entries that the guest should never use. Wait for the old * values to expire before freeing the data. */ as->root = root; flatview_unref(as->current_map); } void memory_region_init_ram(struct uc_struct *uc, MemoryRegion *mr, uint64_t size, uint32_t perms) { memory_region_init(uc, mr, size); mr->ram = true; if (!(perms & UC_PROT_WRITE)) { mr->readonly = true; } mr->perms = perms; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc(uc, size, mr); }