/* * S/390 helpers * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2011 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internal.h" #include "qemu/timer.h" #include "hw/s390x/ioinst.h" #include "sysemu/tcg.h" void s390x_tod_timer(void *opaque) { cpu_inject_clock_comparator((S390CPU *) opaque); } void s390x_cpu_timer(void *opaque) { cpu_inject_cpu_timer((S390CPU *) opaque); } hwaddr s390_cpu_get_phys_page_debug(CPUState *cs, vaddr vaddr) { S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; target_ulong raddr; int prot; uint64_t asc = env->psw.mask & PSW_MASK_ASC; uint64_t tec; /* 31-Bit mode */ if (!(env->psw.mask & PSW_MASK_64)) { vaddr &= 0x7fffffff; } /* We want to read the code (e.g., see what we are single-stepping).*/ if (asc != PSW_ASC_HOME) { asc = PSW_ASC_PRIMARY; } /* * We want to read code even if IEP is active. Use MMU_DATA_LOAD instead * of MMU_INST_FETCH. */ if (mmu_translate(env, vaddr, MMU_DATA_LOAD, asc, &raddr, &prot, &tec)) { return -1; } return raddr; } hwaddr s390_cpu_get_phys_addr_debug(CPUState *cs, vaddr vaddr) { hwaddr phys_addr; target_ulong page; page = vaddr & TARGET_PAGE_MASK; phys_addr = cpu_get_phys_page_debug(cs, page); phys_addr += (vaddr & ~TARGET_PAGE_MASK); return phys_addr; } static inline bool is_special_wait_psw(uint64_t psw_addr) { /* signal quiesce */ return (psw_addr & 0xfffUL) == 0xfffUL; } void s390_handle_wait(S390CPU *cpu) { #if 0 CPUState *cs = CPU(cpu); if (s390_cpu_halt(cpu) == 0) { if (is_special_wait_psw(cpu->env.psw.addr)) { // qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); } else { cpu->env.crash_reason = S390_CRASH_REASON_DISABLED_WAIT; qemu_system_guest_panicked(cpu_get_crash_info(cs)); } } #endif } void load_psw(CPUS390XState *env, uint64_t mask, uint64_t addr) { uint64_t old_mask = env->psw.mask; env->psw.addr = addr; env->psw.mask = mask; env->cc_op = (mask >> 44) & 3; if ((old_mask ^ mask) & PSW_MASK_PER) { s390_cpu_recompute_watchpoints(env_cpu(env)); } if (mask & PSW_MASK_WAIT) { s390_handle_wait(env_archcpu(env)); } } uint64_t get_psw_mask(CPUS390XState *env) { uint64_t r = env->psw.mask; env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr); r &= ~PSW_MASK_CC; assert(!(env->cc_op & ~3)); r |= (uint64_t)env->cc_op << 44; return r; } LowCore *cpu_map_lowcore(CPUS390XState *env) { LowCore *lowcore; hwaddr len = sizeof(LowCore); lowcore = cpu_physical_memory_map(env_cpu(env)->as, env->psa, &len, true); if (len < sizeof(LowCore)) { cpu_abort(env_cpu(env), "Could not map lowcore\n"); } return lowcore; } void cpu_unmap_lowcore(CPUS390XState *env, LowCore *lowcore) { cpu_physical_memory_unmap(env_cpu(env)->as, lowcore, sizeof(LowCore), 1, sizeof(LowCore)); } void do_restart_interrupt(CPUS390XState *env) { uint64_t mask, addr; LowCore *lowcore; lowcore = cpu_map_lowcore(env); lowcore->restart_old_psw.mask = cpu_to_be64(get_psw_mask(env)); lowcore->restart_old_psw.addr = cpu_to_be64(env->psw.addr); mask = be64_to_cpu(lowcore->restart_new_psw.mask); addr = be64_to_cpu(lowcore->restart_new_psw.addr); cpu_unmap_lowcore(env, lowcore); env->pending_int &= ~INTERRUPT_RESTART; load_psw(env, mask, addr); } void s390_cpu_recompute_watchpoints(CPUState *cs) { const int wp_flags = BP_CPU | BP_MEM_WRITE | BP_STOP_BEFORE_ACCESS; S390CPU *cpu = S390_CPU(cs); CPUS390XState *env = &cpu->env; /* We are called when the watchpoints have changed. First remove them all. */ cpu_watchpoint_remove_all(cs, BP_CPU); /* Return if PER is not enabled */ if (!(env->psw.mask & PSW_MASK_PER)) { return; } /* Return if storage-alteration event is not enabled. */ if (!(env->cregs[9] & PER_CR9_EVENT_STORE)) { return; } if (env->cregs[10] == 0 && env->cregs[11] == -1LL) { /* We can't create a watchoint spanning the whole memory range, so split it in two parts. */ cpu_watchpoint_insert(cs, 0, 1ULL << 63, wp_flags, NULL); cpu_watchpoint_insert(cs, 1ULL << 63, 1ULL << 63, wp_flags, NULL); } else if (env->cregs[10] > env->cregs[11]) { /* The address range loops, create two watchpoints. */ cpu_watchpoint_insert(cs, env->cregs[10], -env->cregs[10], wp_flags, NULL); cpu_watchpoint_insert(cs, 0, env->cregs[11] + 1, wp_flags, NULL); } else { /* Default case, create a single watchpoint. */ cpu_watchpoint_insert(cs, env->cregs[10], env->cregs[11] - env->cregs[10] + 1, wp_flags, NULL); } } typedef struct SigpSaveArea { uint64_t fprs[16]; /* 0x0000 */ uint64_t grs[16]; /* 0x0080 */ PSW psw; /* 0x0100 */ uint8_t pad_0x0110[0x0118 - 0x0110]; /* 0x0110 */ uint32_t prefix; /* 0x0118 */ uint32_t fpc; /* 0x011c */ uint8_t pad_0x0120[0x0124 - 0x0120]; /* 0x0120 */ uint32_t todpr; /* 0x0124 */ uint64_t cputm; /* 0x0128 */ uint64_t ckc; /* 0x0130 */ uint8_t pad_0x0138[0x0140 - 0x0138]; /* 0x0138 */ uint32_t ars[16]; /* 0x0140 */ uint64_t crs[16]; /* 0x0384 */ } SigpSaveArea; QEMU_BUILD_BUG_ON(sizeof(SigpSaveArea) != 512); int s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch) { static const uint8_t ar_id = 1; SigpSaveArea *sa; hwaddr len = sizeof(*sa); int i; sa = cpu_physical_memory_map(CPU(cpu)->as, addr, &len, true); if (!sa) { return -EFAULT; } if (len != sizeof(*sa)) { cpu_physical_memory_unmap(CPU(cpu)->as, sa, len, 1, 0); return -EFAULT; } if (store_arch) { cpu_physical_memory_write(CPU(cpu)->as, offsetof(LowCore, ar_access_id), &ar_id, 1); } for (i = 0; i < 16; ++i) { sa->fprs[i] = cpu_to_be64(*get_freg(&cpu->env, i)); } for (i = 0; i < 16; ++i) { sa->grs[i] = cpu_to_be64(cpu->env.regs[i]); } sa->psw.addr = cpu_to_be64(cpu->env.psw.addr); sa->psw.mask = cpu_to_be64(get_psw_mask(&cpu->env)); sa->prefix = cpu_to_be32(cpu->env.psa); sa->fpc = cpu_to_be32(cpu->env.fpc); sa->todpr = cpu_to_be32(cpu->env.todpr); sa->cputm = cpu_to_be64(cpu->env.cputm); sa->ckc = cpu_to_be64(cpu->env.ckc >> 8); for (i = 0; i < 16; ++i) { sa->ars[i] = cpu_to_be32(cpu->env.aregs[i]); } for (i = 0; i < 16; ++i) { sa->crs[i] = cpu_to_be64(cpu->env.cregs[i]); } cpu_physical_memory_unmap(CPU(cpu)->as, sa, len, 1, len); return 0; } typedef struct SigpAdtlSaveArea { uint64_t vregs[32][2]; /* 0x0000 */ uint8_t pad_0x0200[0x0400 - 0x0200]; /* 0x0200 */ uint64_t gscb[4]; /* 0x0400 */ uint8_t pad_0x0420[0x1000 - 0x0420]; /* 0x0420 */ } SigpAdtlSaveArea; QEMU_BUILD_BUG_ON(sizeof(SigpAdtlSaveArea) != 4096); #define ADTL_GS_MIN_SIZE 2048 /* minimal size of adtl save area for GS */ int s390_store_adtl_status(S390CPU *cpu, hwaddr addr, hwaddr len) { SigpAdtlSaveArea *sa; hwaddr save = len; int i; sa = cpu_physical_memory_map(CPU(cpu)->as, addr, &save, true); if (!sa) { return -EFAULT; } if (save != len) { cpu_physical_memory_unmap(CPU(cpu)->as, sa, len, 1, 0); return -EFAULT; } if (s390_has_feat(cpu->env.uc, S390_FEAT_VECTOR)) { for (i = 0; i < 32; i++) { sa->vregs[i][0] = cpu_to_be64(cpu->env.vregs[i][0]); sa->vregs[i][1] = cpu_to_be64(cpu->env.vregs[i][1]); } } if (s390_has_feat(cpu->env.uc, S390_FEAT_GUARDED_STORAGE) && len >= ADTL_GS_MIN_SIZE) { for (i = 0; i < 4; i++) { sa->gscb[i] = cpu_to_be64(cpu->env.gscb[i]); } } cpu_physical_memory_unmap(CPU(cpu)->as, sa, len, 1, len); return 0; } const char *cc_name(enum cc_op cc_op) { static const char * const cc_names[] = { [CC_OP_CONST0] = "CC_OP_CONST0", [CC_OP_CONST1] = "CC_OP_CONST1", [CC_OP_CONST2] = "CC_OP_CONST2", [CC_OP_CONST3] = "CC_OP_CONST3", [CC_OP_DYNAMIC] = "CC_OP_DYNAMIC", [CC_OP_STATIC] = "CC_OP_STATIC", [CC_OP_NZ] = "CC_OP_NZ", [CC_OP_LTGT_32] = "CC_OP_LTGT_32", [CC_OP_LTGT_64] = "CC_OP_LTGT_64", [CC_OP_LTUGTU_32] = "CC_OP_LTUGTU_32", [CC_OP_LTUGTU_64] = "CC_OP_LTUGTU_64", [CC_OP_LTGT0_32] = "CC_OP_LTGT0_32", [CC_OP_LTGT0_64] = "CC_OP_LTGT0_64", [CC_OP_ADD_64] = "CC_OP_ADD_64", [CC_OP_ADDU_64] = "CC_OP_ADDU_64", [CC_OP_ADDC_64] = "CC_OP_ADDC_64", [CC_OP_SUB_64] = "CC_OP_SUB_64", [CC_OP_SUBU_64] = "CC_OP_SUBU_64", [CC_OP_SUBB_64] = "CC_OP_SUBB_64", [CC_OP_ABS_64] = "CC_OP_ABS_64", [CC_OP_NABS_64] = "CC_OP_NABS_64", [CC_OP_ADD_32] = "CC_OP_ADD_32", [CC_OP_ADDU_32] = "CC_OP_ADDU_32", [CC_OP_ADDC_32] = "CC_OP_ADDC_32", [CC_OP_SUB_32] = "CC_OP_SUB_32", [CC_OP_SUBU_32] = "CC_OP_SUBU_32", [CC_OP_SUBB_32] = "CC_OP_SUBB_32", [CC_OP_ABS_32] = "CC_OP_ABS_32", [CC_OP_NABS_32] = "CC_OP_NABS_32", [CC_OP_COMP_32] = "CC_OP_COMP_32", [CC_OP_COMP_64] = "CC_OP_COMP_64", [CC_OP_TM_32] = "CC_OP_TM_32", [CC_OP_TM_64] = "CC_OP_TM_64", [CC_OP_NZ_F32] = "CC_OP_NZ_F32", [CC_OP_NZ_F64] = "CC_OP_NZ_F64", [CC_OP_NZ_F128] = "CC_OP_NZ_F128", [CC_OP_ICM] = "CC_OP_ICM", [CC_OP_SLA] = "CC_OP_SLA", [CC_OP_FLOGR] = "CC_OP_FLOGR", [CC_OP_LCBB] = "CC_OP_LCBB", [CC_OP_VC] = "CC_OP_VC", }; return cc_names[cc_op]; }