/* * Bitmap Module * * Stolen from linux/src/lib/bitmap.c * * Copyright (C) 2010 Corentin Chary * * This source code is licensed under the GNU General Public License, * Version 2. */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "qemu/bitmap.h" #include "qemu/atomic.h" /* * bitmaps provide an array of bits, implemented using an * array of unsigned longs. The number of valid bits in a * given bitmap does _not_ need to be an exact multiple of * BITS_PER_LONG. * * The possible unused bits in the last, partially used word * of a bitmap are 'don't care'. The implementation makes * no particular effort to keep them zero. It ensures that * their value will not affect the results of any operation. * The bitmap operations that return Boolean (bitmap_empty, * for example) or scalar (bitmap_weight, for example) results * carefully filter out these unused bits from impacting their * results. * * These operations actually hold to a slightly stronger rule: * if you don't input any bitmaps to these ops that have some * unused bits set, then they won't output any set unused bits * in output bitmaps. * * The byte ordering of bitmaps is more natural on little * endian architectures. */ int slow_bitmap_empty(const unsigned long *bitmap, long bits) { long k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (bitmap[k]) { return 0; } } if (bits % BITS_PER_LONG) { if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { return 0; } } return 1; } int slow_bitmap_full(const unsigned long *bitmap, long bits) { long k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (~bitmap[k]) { return 0; } } if (bits % BITS_PER_LONG) { if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { return 0; } } return 1; } int slow_bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, long bits) { long k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (bitmap1[k] != bitmap2[k]) { return 0; } } if (bits % BITS_PER_LONG) { if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { return 0; } } return 1; } void slow_bitmap_complement(unsigned long *dst, const unsigned long *src, long bits) { long k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { dst[k] = ~src[k]; } if (bits % BITS_PER_LONG) { dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); } } int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, long bits) { long k; long nr = BITS_TO_LONGS(bits); unsigned long result = 0; for (k = 0; k < nr; k++) { result |= (dst[k] = bitmap1[k] & bitmap2[k]); } return result != 0; } void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, long bits) { long k; long nr = BITS_TO_LONGS(bits); for (k = 0; k < nr; k++) { dst[k] = bitmap1[k] | bitmap2[k]; } } void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, long bits) { long k; long nr = BITS_TO_LONGS(bits); for (k = 0; k < nr; k++) { dst[k] = bitmap1[k] ^ bitmap2[k]; } } int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, long bits) { long k; long nr = BITS_TO_LONGS(bits); unsigned long result = 0; for (k = 0; k < nr; k++) { result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); } return result != 0; } void qemu_bitmap_set(unsigned long *map, long start, long nr) { unsigned long *p = map + BIT_WORD(start); const long size = start + nr; int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); assert(start >= 0 && nr >= 0); while (nr - bits_to_set >= 0) { *p |= mask_to_set; nr -= bits_to_set; bits_to_set = BITS_PER_LONG; mask_to_set = ~0UL; p++; } if (nr) { mask_to_set &= BITMAP_LAST_WORD_MASK(size); *p |= mask_to_set; } } void bitmap_set_atomic(unsigned long *map, long start, long nr) { unsigned long *p = map + BIT_WORD(start); const long size = start + nr; int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); assert(start >= 0 && nr >= 0); /* First word */ if (nr - bits_to_set > 0) { atomic_or(p, mask_to_set); nr -= bits_to_set; bits_to_set = BITS_PER_LONG; mask_to_set = ~0UL; p++; } /* Full words */ if (bits_to_set == BITS_PER_LONG) { while (nr >= BITS_PER_LONG) { *p = ~0UL; nr -= BITS_PER_LONG; p++; } } /* Last word */ if (nr) { mask_to_set &= BITMAP_LAST_WORD_MASK(size); atomic_or(p, mask_to_set); } else { /* If we avoided the full barrier in atomic_or(), issue a * barrier to account for the assignments in the while loop. */ smp_mb(); } } void qemu_bitmap_clear(unsigned long *map, long start, long nr) { unsigned long *p = map + BIT_WORD(start); const long size = start + nr; int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); assert(start >= 0 && nr >= 0); while (nr - bits_to_clear >= 0) { *p &= ~mask_to_clear; nr -= bits_to_clear; bits_to_clear = BITS_PER_LONG; mask_to_clear = ~0UL; p++; } if (nr) { mask_to_clear &= BITMAP_LAST_WORD_MASK(size); *p &= ~mask_to_clear; } } bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr) { unsigned long *p = map + BIT_WORD(start); const long size = start + nr; int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); unsigned long dirty = 0; unsigned long old_bits; assert(start >= 0 && nr >= 0); /* First word */ if (nr - bits_to_clear > 0) { old_bits = atomic_fetch_and(p, ~mask_to_clear); dirty |= old_bits & mask_to_clear; nr -= bits_to_clear; bits_to_clear = BITS_PER_LONG; mask_to_clear = ~0UL; p++; } /* Full words */ if (bits_to_clear == BITS_PER_LONG) { while (nr >= BITS_PER_LONG) { if (*p) { old_bits = *p; *p = 0; dirty |= old_bits; } nr -= BITS_PER_LONG; p++; } } /* Last word */ if (nr) { mask_to_clear &= BITMAP_LAST_WORD_MASK(size); old_bits = atomic_fetch_and(p, ~mask_to_clear); dirty |= old_bits & mask_to_clear; } else { if (!dirty) { smp_mb(); } } return dirty != 0; } void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src, long nr) { while (nr > 0) { *dst = *src; *src = 0; dst++; src++; nr -= BITS_PER_LONG; } } #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask)) /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned long nr, unsigned long align_mask) { unsigned long index, end, i; again: index = find_next_zero_bit(map, size, start); /* Align allocation */ index = ALIGN_MASK(index, align_mask); end = index + nr; if (end > size) { return end; } i = find_next_bit(map, end, index); if (i < end) { start = i + 1; goto again; } return index; } int slow_bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, long bits) { long k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) { if (bitmap1[k] & bitmap2[k]) { return 1; } } if (bits % BITS_PER_LONG) { if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { return 1; } } return 0; } long slow_bitmap_count_one(const unsigned long *bitmap, long nbits) { long k, lim = nbits / BITS_PER_LONG, result = 0; for (k = 0; k < lim; k++) { result += ctpopl(bitmap[k]); } if (nbits % BITS_PER_LONG) { result += ctpopl(bitmap[k] & BITMAP_LAST_WORD_MASK(nbits)); } return result; } static void bitmap_to_from_le(unsigned long *dst, const unsigned long *src, long nbits) { long len = BITS_TO_LONGS(nbits); #ifdef HOST_WORDS_BIGENDIAN long index; for (index = 0; index < len; index++) { # if HOST_LONG_BITS == 64 dst[index] = bswap64(src[index]); # else dst[index] = bswap32(src[index]); # endif } #else memcpy(dst, src, len * sizeof(unsigned long)); #endif } void bitmap_from_le(unsigned long *dst, const unsigned long *src, long nbits) { bitmap_to_from_le(dst, src, nbits); } void bitmap_to_le(unsigned long *dst, const unsigned long *src, long nbits) { bitmap_to_from_le(dst, src, nbits); } /* * Copy "src" bitmap with a positive offset and put it into the "dst" * bitmap. The caller needs to make sure the bitmap size of "src" * is bigger than (shift + nbits). */ void bitmap_copy_with_src_offset(unsigned long *dst, const unsigned long *src, unsigned long shift, unsigned long nbits) { unsigned long left_mask, right_mask, last_mask; /* Proper shift src pointer to the first word to copy from */ src += BIT_WORD(shift); shift %= BITS_PER_LONG; if (!shift) { /* Fast path */ bitmap_copy(dst, src, nbits); return; } right_mask = (1ul << shift) - 1; left_mask = ~right_mask; while (nbits >= BITS_PER_LONG) { *dst = (*src & left_mask) >> shift; *dst |= (src[1] & right_mask) << (BITS_PER_LONG - shift); dst++; src++; nbits -= BITS_PER_LONG; } if (nbits > BITS_PER_LONG - shift) { *dst = (*src & left_mask) >> shift; nbits -= BITS_PER_LONG - shift; last_mask = (1ul << nbits) - 1; *dst |= (src[1] & last_mask) << (BITS_PER_LONG - shift); } else if (nbits) { last_mask = (1ul << nbits) - 1; *dst = (*src >> shift) & last_mask; } } /* * Copy "src" bitmap into the "dst" bitmap with an offset in the * "dst". The caller needs to make sure the bitmap size of "dst" is * bigger than (shift + nbits). */ void bitmap_copy_with_dst_offset(unsigned long *dst, const unsigned long *src, unsigned long shift, unsigned long nbits) { unsigned long left_mask, right_mask, last_mask; /* Proper shift dst pointer to the first word to copy from */ dst += BIT_WORD(shift); shift %= BITS_PER_LONG; if (!shift) { /* Fast path */ bitmap_copy(dst, src, nbits); return; } right_mask = (1ul << (BITS_PER_LONG - shift)) - 1; left_mask = ~right_mask; *dst &= (1ul << shift) - 1; while (nbits >= BITS_PER_LONG) { *dst |= (*src & right_mask) << shift; dst[1] = (*src & left_mask) >> (BITS_PER_LONG - shift); dst++; src++; nbits -= BITS_PER_LONG; } if (nbits > BITS_PER_LONG - shift) { *dst |= (*src & right_mask) << shift; nbits -= BITS_PER_LONG - shift; last_mask = ((1ul << nbits) - 1) << (BITS_PER_LONG - shift); dst[1] = (*src & last_mask) >> (BITS_PER_LONG - shift); } else if (nbits) { last_mask = (1ul << nbits) - 1; *dst |= (*src & last_mask) << shift; } }