// // Copyright 2016 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "pxr/pxr.h" #include "pxr/base/gf/line2d.h" #include "pxr/base/gf/math.h" #include "pxr/base/tf/type.h" PXR_NAMESPACE_OPEN_SCOPE // CODE_COVERAGE_OFF_GCOV_BUG TF_REGISTRY_FUNCTION(TfType) { TfType::Define(); } // CODE_COVERAGE_ON_GCOV_BUG GfVec2d GfLine2d::FindClosestPoint(const GfVec2d &point, double *t) const { // Compute the vector from the start point to the given point. GfVec2d v = point - _p0; // Find the length of the projection of this vector onto the line. double lt = GfDot(v, _dir); if (t) *t = lt; return GetPoint( lt ); } bool GfFindClosestPoints( const GfLine2d &l1, const GfLine2d &l2, GfVec2d *closest1, GfVec2d *closest2, double *t1, double *t2 ) { // Define terms: // p1 = line 1's position // d1 = line 1's direction // p2 = line 2's position // d2 = line 2's direction const GfVec2d &p1 = l1._p0; const GfVec2d &d1 = l1._dir; const GfVec2d &p2 = l2._p0; const GfVec2d &d2 = l2._dir; // We want to find points closest1 and closest2 on each line. // Their parametric definitions are: // closest1 = p1 + t1 * d1 // closest2 = p2 + t2 * d2 // // We know that the line connecting closest1 and closest2 is // perpendicular to both the ray and the line segment. So: // d1 . (closest2 - closest1) = 0 // d2 . (closest2 - closest1) = 0 // // Substituting gives us: // d1 . [ (p2 + t2 * d2) - (p1 + t1 * d1) ] = 0 // d2 . [ (p2 + t2 * d2) - (p1 + t1 * d1) ] = 0 // // Rearranging terms gives us: // t2 * (d1.d2) - t1 * (d1.d1) = d1.p1 - d1.p2 // t2 * (d2.d2) - t1 * (d2.d1) = d2.p1 - d2.p2 // // Substitute to simplify: // a = d1.d2 // b = d1.d1 // c = d1.p1 - d1.p2 // d = d2.d2 // e = d2.d1 (== a, if you're paying attention) // f = d2.p1 - d2.p2 double a = GfDot(d1, d2); double b = GfDot(d1, d1); double c = GfDot(d1, p1) - GfDot(d1, p2); double d = GfDot(d2, d2); double e = a; double f = GfDot(d2, p1) - GfDot(d2, p2); // And we end up with: // t2 * a - t1 * b = c // t2 * d - t1 * e = f // // Solve for t1 and t2: // t1 = (c * d - a * f) / (a * e - b * d) // t2 = (c * e - b * f) / (a * e - b * d) // // Note the identical denominators... double denom = a * e - b * d; // Denominator == 0 means the lines are parallel; no intersection. if ( GfIsClose( denom, 0, 1e-6 ) ) return false; double lt1 = (c * d - a * f) / denom; double lt2 = (c * e - b * f) / denom; if ( closest1 ) *closest1 = l1.GetPoint( lt1 ); if ( closest2 ) *closest2 = l2.GetPoint( lt2 ); if ( t1 ) *t1 = lt1; if ( t2 ) *t2 = lt2; return true; } PXR_NAMESPACE_CLOSE_SCOPE