// // Copyright 2016 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // //////////////////////////////////////////////////////////////////////// // This file is generated by a script. Do not edit directly. Edit the // matrix2.template.h file to make changes. #ifndef PXR_BASE_GF_MATRIX2D_H #define PXR_BASE_GF_MATRIX2D_H /// \file gf/matrix2d.h /// \ingroup group_gf_LinearAlgebra #include "pxr/pxr.h" #include "pxr/base/gf/api.h" #include "pxr/base/gf/declare.h" #include "pxr/base/gf/matrixData.h" #include "pxr/base/gf/vec2d.h" #include "pxr/base/gf/traits.h" #include #include #include PXR_NAMESPACE_OPEN_SCOPE template <> struct GfIsGfMatrix { static const bool value = true; }; class GfMatrix2d; class GfMatrix2f; /// \class GfMatrix2d /// \ingroup group_gf_LinearAlgebra /// /// Stores a 2x2 matrix of \c double elements. A basic type. /// /// Matrices are defined to be in row-major order, so matrix[i][j] /// indexes the element in the \e i th row and the \e j th column. /// class GfMatrix2d { public: typedef double ScalarType; static const size_t numRows = 2; static const size_t numColumns = 2; /// Default constructor. Leaves the matrix component values undefined. GfMatrix2d() = default; /// Constructor. Initializes the matrix from 4 independent /// \c double values, specified in row-major order. For example, /// parameter \e m10 specifies the value in row 1 and column 0. GfMatrix2d(double m00, double m01, double m10, double m11) { Set(m00, m01, m10, m11); } /// Constructor. Initializes the matrix from a 2x2 array /// of \c double values, specified in row-major order. GfMatrix2d(const double m[2][2]) { Set(m); } /// Constructor. Explicitly initializes the matrix to \e s times the /// identity matrix. explicit GfMatrix2d(double s) { SetDiagonal(s); } /// This explicit constructor initializes the matrix to \p s times /// the identity matrix. explicit GfMatrix2d(int s) { SetDiagonal(s); } /// Constructor. Explicitly initializes the matrix to diagonal form, /// with the \e i th element on the diagonal set to v[i]. explicit GfMatrix2d(const GfVec2d& v) { SetDiagonal(v); } /// Constructor. Initialize the matrix from a vector of vectors of /// double. The vector is expected to be 2x2. If it is /// too big, only the first 2 rows and/or columns will be used. /// If it is too small, uninitialized elements will be filled in with /// the corresponding elements from an identity matrix. /// GF_API explicit GfMatrix2d(const std::vector< std::vector >& v); /// Constructor. Initialize the matrix from a vector of vectors of /// float. The vector is expected to be 2x2. If it is /// too big, only the first 2 rows and/or columns will be used. /// If it is too small, uninitialized elements will be filled in with /// the corresponding elements from an identity matrix. /// GF_API explicit GfMatrix2d(const std::vector< std::vector >& v); /// This explicit constructor converts a "float" matrix to a "double" matrix. GF_API explicit GfMatrix2d(const class GfMatrix2f& m); /// Sets a row of the matrix from a Vec2. void SetRow(int i, const GfVec2d & v) { _mtx[i][0] = v[0]; _mtx[i][1] = v[1]; } /// Sets a column of the matrix from a Vec2. void SetColumn(int i, const GfVec2d & v) { _mtx[0][i] = v[0]; _mtx[1][i] = v[1]; } /// Gets a row of the matrix as a Vec2. GfVec2d GetRow(int i) const { return GfVec2d(_mtx[i][0], _mtx[i][1]); } /// Gets a column of the matrix as a Vec2. GfVec2d GetColumn(int i) const { return GfVec2d(_mtx[0][i], _mtx[1][i]); } /// Sets the matrix from 4 independent \c double values, /// specified in row-major order. For example, parameter \e m10 specifies /// the value in row 1 and column 0. GfMatrix2d& Set(double m00, double m01, double m10, double m11) { _mtx[0][0] = m00; _mtx[0][1] = m01; _mtx[1][0] = m10; _mtx[1][1] = m11; return *this; } /// Sets the matrix from a 2x2 array of \c double /// values, specified in row-major order. GfMatrix2d& Set(const double m[2][2]) { _mtx[0][0] = m[0][0]; _mtx[0][1] = m[0][1]; _mtx[1][0] = m[1][0]; _mtx[1][1] = m[1][1]; return *this; } /// Sets the matrix to the identity matrix. GfMatrix2d& SetIdentity() { return SetDiagonal(1); } /// Sets the matrix to zero. GfMatrix2d& SetZero() { return SetDiagonal(0); } /// Sets the matrix to \e s times the identity matrix. GF_API GfMatrix2d& SetDiagonal(double s); /// Sets the matrix to have diagonal (v[0], v[1]). GF_API GfMatrix2d& SetDiagonal(const GfVec2d&); /// Fills a 2x2 array of \c double values with the values in /// the matrix, specified in row-major order. GF_API double* Get(double m[2][2]) const; /// Returns raw access to components of matrix as an array of /// \c double values. Components are in row-major order. double* data() { return _mtx.GetData(); } /// Returns const raw access to components of matrix as an array of /// \c double values. Components are in row-major order. const double* data() const { return _mtx.GetData(); } /// Returns vector components as an array of \c double values. double* GetArray() { return _mtx.GetData(); } /// Returns vector components as a const array of \c double values. const double* GetArray() const { return _mtx.GetData(); } /// Accesses an indexed row \e i of the matrix as an array of 2 \c /// double values so that standard indexing (such as m[0][1]) /// works correctly. double* operator [](int i) { return _mtx[i]; } /// Accesses an indexed row \e i of the matrix as an array of 2 \c /// double values so that standard indexing (such as m[0][1]) /// works correctly. const double* operator [](int i) const { return _mtx[i]; } /// Hash. friend inline size_t hash_value(GfMatrix2d const &m) { int nElems = 2 * 2; size_t h = 0; const double *p = m.GetArray(); while (nElems--) boost::hash_combine(h, *p++); return h; } /// Tests for element-wise matrix equality. All elements must match /// exactly for matrices to be considered equal. GF_API bool operator ==(const GfMatrix2d& m) const; /// Tests for element-wise matrix equality. All elements must match /// exactly for matrices to be considered equal. GF_API bool operator ==(const GfMatrix2f& m) const; /// Tests for element-wise matrix inequality. All elements must match /// exactly for matrices to be considered equal. bool operator !=(const GfMatrix2d& m) const { return !(*this == m); } /// Tests for element-wise matrix inequality. All elements must match /// exactly for matrices to be considered equal. bool operator !=(const GfMatrix2f& m) const { return !(*this == m); } /// Returns the transpose of the matrix. GF_API GfMatrix2d GetTranspose() const; /// Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the /// matrix is singular. (FLT_MAX is the largest value a \c float can have, /// as defined by the system.) The matrix is considered singular if the /// determinant is less than or equal to the optional parameter \e eps. If /// \e det is non-null, *det is set to the determinant. GF_API GfMatrix2d GetInverse(double* det = NULL, double eps = 0) const; /// Returns the determinant of the matrix. GF_API double GetDeterminant() const; /// Post-multiplies matrix \e m into this matrix. GF_API GfMatrix2d& operator *=(const GfMatrix2d& m); /// Multiplies the matrix by a double. GF_API GfMatrix2d& operator *=(double); /// Returns the product of a matrix and a double. friend GfMatrix2d operator *(const GfMatrix2d& m1, double d) { GfMatrix2d m = m1; return m *= d; } /// // Returns the product of a matrix and a double. friend GfMatrix2d operator *(double d, const GfMatrix2d& m) { return m * d; } /// Adds matrix \e m to this matrix. GF_API GfMatrix2d& operator +=(const GfMatrix2d& m); /// Subtracts matrix \e m from this matrix. GF_API GfMatrix2d& operator -=(const GfMatrix2d& m); /// Returns the unary negation of matrix \e m. GF_API friend GfMatrix2d operator -(const GfMatrix2d& m); /// Adds matrix \e m2 to \e m1 friend GfMatrix2d operator +(const GfMatrix2d& m1, const GfMatrix2d& m2) { GfMatrix2d tmp(m1); tmp += m2; return tmp; } /// Subtracts matrix \e m2 from \e m1. friend GfMatrix2d operator -(const GfMatrix2d& m1, const GfMatrix2d& m2) { GfMatrix2d tmp(m1); tmp -= m2; return tmp; } /// Multiplies matrix \e m1 by \e m2. friend GfMatrix2d operator *(const GfMatrix2d& m1, const GfMatrix2d& m2) { GfMatrix2d tmp(m1); tmp *= m2; return tmp; } /// Divides matrix \e m1 by \e m2 (that is, m1 * inv(m2)). friend GfMatrix2d operator /(const GfMatrix2d& m1, const GfMatrix2d& m2) { return(m1 * m2.GetInverse()); } /// Returns the product of a matrix \e m and a column vector \e vec. friend inline GfVec2d operator *(const GfMatrix2d& m, const GfVec2d& vec) { return GfVec2d(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[0][1], vec[0] * m._mtx[1][0] + vec[1] * m._mtx[1][1]); } /// Returns the product of row vector \e vec and a matrix \e m. friend inline GfVec2d operator *(const GfVec2d &vec, const GfMatrix2d& m) { return GfVec2d(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[1][0], vec[0] * m._mtx[0][1] + vec[1] * m._mtx[1][1]); } /// Returns the product of a matrix \e m and a column vector \e vec. /// Note that the return type is a \c GfVec2f. GF_API friend GfVec2f operator *(const GfMatrix2d& m, const GfVec2f& vec); /// Returns the product of row vector \e vec and a matrix \e m. /// Note that the return type is a \c GfVec2f. GF_API friend GfVec2f operator *(const GfVec2f &vec, const GfMatrix2d& m); private: /// Matrix storage, in row-major order. GfMatrixData _mtx; // Friend declarations friend class GfMatrix2f; }; /// Tests for equality within a given tolerance, returning \c true if the /// difference between each component of the matrix is less than or equal /// to \p tolerance, or false otherwise. GF_API bool GfIsClose(GfMatrix2d const &m1, GfMatrix2d const &m2, double tolerance); /// Output a GfMatrix2d /// \ingroup group_gf_DebuggingOutput GF_API std::ostream& operator<<(std::ostream &, GfMatrix2d const &); PXR_NAMESPACE_CLOSE_SCOPE #endif // PXR_BASE_GF_MATRIX2D_H