//
// Copyright 2016 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
////////////////////////////////////////////////////////////////////////
// This file is generated by a script. Do not edit directly. Edit the
// matrix3.template.h file to make changes.
{% extends "matrix.template.h" %}
{% block forwardDeclarations %}
class GfRotation;
class GfQuaternion;
class GfQuat{{ SCL[0] }};
{% endblock %}
{% block classDocs %}
///
3D Transformations
///
/// Three methods, SetRotate(), SetScale(), and ExtractRotation(), interpret
/// a {{ MAT }} as a 3D transformation. By convention, vectors are treated
/// primarily as row vectors, implying the following:
///
/// \li Transformation matrices are organized to deal with row
/// vectors, not column vectors.
/// \li Each of the Set() methods in this class completely rewrites the
/// matrix; for example, SetRotate() yields a matrix
/// which does nothing but rotate.
/// \li When multiplying two transformation matrices, the matrix
/// on the left applies a more local transformation to a row
/// vector. For example, if R represents a rotation
/// matrix and S represents a scale matrix, the
/// product R*S will rotate a row vector, then scale
/// it.
{% endblock %}
{% block customDiagonalConstructors %}
/// This explicit constructor initializes the matrix to \p s times
/// the identity matrix.
explicit {{ MAT }}(int s) {
SetDiagonal(s);
}
{% endblock customDiagonalConstructors %}
{% block customConstructors %}
/// Constructor. Initialize matrix from rotation.
GF_API
{{ MAT }}(const GfRotation& rot);
/// Constructor. Initialize matrix from a quaternion.
GF_API
explicit {{ MAT }}(const GfQuat{{ SCL[0] }}& rot);
{% endblock customConstructors %}
{% block customFunctions %}
/// Makes the matrix orthonormal in place. This is an iterative method that
/// is much more stable than the previous cross/cross method. If the
/// iterative method does not converge, a warning is issued.
///
/// Returns true if the iteration converged, false otherwise. Leaves any
/// translation part of the matrix unchanged. If \a issueWarning is true,
/// this method will issue a warning if the iteration does not converge,
/// otherwise it will be silent.
GF_API
bool Orthonormalize(bool issueWarning=true);
/// Returns an orthonormalized copy of the matrix.
GF_API
{{ MAT }} GetOrthonormalized(bool issueWarning=true) const;
/// Returns the sign of the determinant of the matrix, i.e. 1 for a
/// right-handed matrix, -1 for a left-handed matrix, and 0 for a
/// singular matrix.
GF_API
double GetHandedness() const;
/// Returns true if the vectors in the matrix form a right-handed
/// coordinate system.
bool IsRightHanded() const {
return GetHandedness() == 1.0;
}
/// Returns true if the vectors in matrix form a left-handed
/// coordinate system.
bool IsLeftHanded() const {
return GetHandedness() == -1.0;
}
{% endblock customFunctions %}
{% block customXformFunctions %}
/// Sets matrix to specify a uniform scaling by \e scaleFactor.
GF_API
{{ MAT }}& SetScale({{ SCL }} scaleFactor);
/// \name 3D Transformation Utilities
/// @{
/// Sets the matrix to specify a rotation equivalent to \e rot.
GF_API
{{ MAT }}& SetRotate(const GfQuat{{ SCL[0] }} &rot);
/// Sets the matrix to specify a rotation equivalent to \e rot.
GF_API
{{ MAT }}& SetRotate(const GfRotation &rot);
/// Sets the matrix to specify a nonuniform scaling in x, y, and z by
/// the factors in vector \e scaleFactors.
GF_API
{{ MAT }}& SetScale(const GfVec3{{ SCL[0] }} &scaleFactors);
/// Returns the rotation corresponding to this matrix. This works
/// well only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GF_API
GfRotation ExtractRotation() const;
/// Decompose the rotation corresponding to this matrix about 3
/// orthogonal axes. If the axes are not orthogonal, warnings
/// will be spewed.
///
/// This is a convenience method that is equivalent to calling
/// ExtractRotation().Decompose().
GF_API
GfVec3{{ SCL[0] }} DecomposeRotation(const GfVec3{{ SCL[0] }} &axis0,
const GfVec3{{ SCL[0] }} &axis1,
const GfVec3{{ SCL[0] }} &axis2 ) const;
/// Returns the quaternion corresponding to this matrix. This works
/// well only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GF_API
GfQuaternion ExtractRotationQuaternion() const;
/// @}
private:
/// Set the matrix to the rotation given by a quaternion,
/// defined by the real component \p r and imaginary components \p i.
void _SetRotateFromQuat({{ SCL }} r, const GfVec3{{ SCL[0] }}& i);
{% endblock customXformFunctions %}
/* #endif */