//
// Copyright 2016 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
////////////////////////////////////////////////////////////////////////
// This file is generated by a script. Do not edit directly. Edit the
// matrix4.template.h file to make changes.
{% extends "matrix.template.h" %}
{% block includes %}
#include "pxr/base/gf/homogeneous.h"
#include "pxr/base/gf/limits.h"
#include "pxr/base/gf/math.h"
#include "pxr/base/gf/vec3{{ SCL[0] }}.h"
{% endblock %}
{% block forwardDeclarations %}
class GfQuat{{ SCL[0] }};
class GfRotation;
class GfMatrix3{{ SCL[0] }};
{% endblock %}
{% block classDocs %}
///
3D Transformations
///
/// The following methods interpret a {{ MAT }} as a 3D
/// transformation: SetRotate(), SetScale(), SetTranslate(), SetLookAt(),
/// Factor(), ExtractTranslation(), ExtractRotation(), Transform(), TransformDir().
/// By convention, vectors are treated primarily as row vectors,
/// implying the following:
/// \li Transformation matrices are organized to deal with row
/// vectors, not column vectors. For example, the last row of a matrix
/// contains the translation amounts.
/// \li Each of the Set() methods below completely rewrites the
/// matrix; for example, SetTranslate() yields a matrix
/// which does nothing but translate.
/// \li When multiplying two transformation matrices, the matrix
/// on the left applies a more local transformation to a row
/// vector. For example, if R represents a rotation
/// matrix and T represents a translation matrix, the
/// product R*T will rotate a row vector, then translate
/// it.
{% endblock classDocs %}
{% block customConstructors %}
{% for S in SCALARS %}
/// Constructor. Initialize the matrix from {{ DIM }} row vectors of
/// {{ S }}. Each vector is expected to length {{ DIM }}. If it is too
/// big, only the first {{ DIM }} items will be used. If it is too small,
/// uninitialized elements will be filled in with the
/// corresponding elements from an identity matrix.
///
GF_API
explicit {{ MAT }}(const std::vector<{{ S }}>& r0,
const std::vector<{{ S }}>& r1,
const std::vector<{{ S }}>& r2,
const std::vector<{{ S }}>& r3);
{% endfor %}
/// Constructor. Initializes a transformation matrix to perform the
/// indicated rotation and translation.
GF_API
{{ MAT }}(const GfRotation& rotate,
const GfVec3{{ SCL[0] }}& translate);
/// Constructor. Initializes a transformation matrix to perform the
/// indicated rotation and translation.
GF_API
{{ MAT }}(const GfMatrix3{{ SCL[0] }}& rotmx,
const GfVec3{{ SCL[0] }}& translate);
{% endblock customConstructors %}
{% block customFunctions %}
/// Sets a row of the matrix from a Vec3.
/// The fourth element of the row is ignored.
void SetRow3(int i, const GfVec3{{ SCL[0] }} & v) {
_mtx[i][0] = v[0];
_mtx[i][1] = v[1];
_mtx[i][2] = v[2];
}
/// Gets a row of the matrix as a Vec3.
GfVec3{{ SCL[0] }} GetRow3(int i) const {
return GfVec3{{ SCL[0] }}(_mtx[i][0], _mtx[i][1], _mtx[i][2]);
}
/// Returns the determinant of the upper 3x3 matrix. This method is useful
/// when the matrix describes a linear transformation such as a rotation or
/// scale because the other values in the 4x4 matrix are not important.
double GetDeterminant3() const {
return _GetDeterminant3(0, 1, 2, 0, 1, 2);
}
/// Returns true, if the row vectors of the upper 3x3 matrix form an
/// orthogonal basis. Note they do not have to be unit length for this
/// test to return true.
bool HasOrthogonalRows3() const {
// XXX Should add GfAreOrthogonal(v0, v1, v2) (which also
// GfRotation::Decompose() could use).
GfVec3{{ SCL[0] }} axis0(GetRow3(0)), axis1(GetRow3(1)), axis2(GetRow3(2));
return (GfAbs(GfDot(axis0, axis1)) < GF_MIN_ORTHO_TOLERANCE &&
GfAbs(GfDot(axis0, axis2)) < GF_MIN_ORTHO_TOLERANCE &&
GfAbs(GfDot(axis1, axis2)) < GF_MIN_ORTHO_TOLERANCE);
}
/// Makes the matrix orthonormal in place. This is an iterative method
/// that is much more stable than the previous cross/cross method. If the
/// iterative method does not converge, a warning is issued.
///
/// Returns true if the iteration converged, false otherwise. Leaves any
/// translation part of the matrix unchanged. If \a issueWarning is true,
/// this method will issue a warning if the iteration does not converge,
/// otherwise it will be silent.
GF_API
bool Orthonormalize(bool issueWarning=true);
/// Returns an orthonormalized copy of the matrix.
GF_API
{{ MAT }} GetOrthonormalized(bool issueWarning=true) const;
/// Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1
/// for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
/// singular matrix.
GF_API
double GetHandedness() const;
/// Returns true if the vectors in the upper 3x3 matrix form a
/// right-handed coordinate system.
bool IsRightHanded() const {
return GetHandedness() == 1.0;
}
/// Returns true if the vectors in the upper 3x3 matrix form a left-handed
/// coordinate system.
bool IsLeftHanded() const {
return GetHandedness() == -1.0;
}
{% endblock customFunctions %}
{% block customXformFunctions %}
/// Sets matrix to specify a uniform scaling by \e scaleFactor.
GF_API
{{ MAT }}& SetScale({{ SCL }} scaleFactor);
/// Returns the matrix with any scaling or shearing removed,
/// leaving only the rotation and translation.
/// If the matrix cannot be decomposed, returns the original matrix.
GF_API
{{ MAT }} RemoveScaleShear() const;
/// \name 3D Transformation Utilities
/// @{
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// and clears the translation.
GF_API
{{ MAT }}& SetRotate(const GfQuat{{ SCL[0] }} &rot);
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// without clearing the translation.
GF_API
{{ MAT }}& SetRotateOnly(const GfQuat{{ SCL[0] }} &rot);
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// and clears the translation.
GF_API
{{ MAT }}& SetRotate(const GfRotation &rot);
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// without clearing the translation.
GF_API
{{ MAT }}& SetRotateOnly(const GfRotation &rot);
/// Sets the matrix to specify a rotation equivalent to \e mx,
/// and clears the translation.
GF_API
{{ MAT }}& SetRotate(const GfMatrix3{{ SCL[0] }} &mx);
/// Sets the matrix to specify a rotation equivalent to \e mx,
/// without clearing the translation.
GF_API
{{ MAT }}& SetRotateOnly(const GfMatrix3{{ SCL[0] }} &mx);
/// Sets the matrix to specify a nonuniform scaling in x, y, and z by
/// the factors in vector \e scaleFactors.
GF_API
{{ MAT }}& SetScale(const GfVec3{{ SCL[0] }} &scaleFactors);
/// Sets matrix to specify a translation by the vector \e trans,
/// and clears the rotation.
GF_API
{{ MAT }}& SetTranslate(const GfVec3{{ SCL[0] }} &trans);
/// Sets matrix to specify a translation by the vector \e trans,
/// without clearing the rotation.
GF_API
{{ MAT }}& SetTranslateOnly(const GfVec3{{ SCL[0] }} &t);
/// Sets matrix to specify a rotation by \e rotate and a
/// translation by \e translate.
GF_API
{{ MAT }}& SetTransform(const GfRotation& rotate,
const GfVec3{{ SCL[0] }}& translate);
/// Sets matrix to specify a rotation by \e rotmx and a
/// translation by \e translate.
GF_API
{{ MAT }}& SetTransform(const GfMatrix3{{ SCL[0] }}& rotmx,
const GfVec3{{ SCL[0] }}& translate);
/// Sets the matrix to specify a viewing matrix from parameters
/// similar to those used by gluLookAt(3G). \e eyePoint
/// represents the eye point in world space. \e centerPoint
/// represents the world-space center of attention. \e upDirection
/// is a vector indicating which way is up.
GF_API
{{ MAT }}& SetLookAt(const GfVec3{{ SCL[0] }} &eyePoint,
const GfVec3{{ SCL[0] }} ¢erPoint,
const GfVec3{{ SCL[0] }} &upDirection);
/// Sets the matrix to specify a viewing matrix from a world-space
/// \e eyePoint and a world-space rotation that rigidly rotates the
/// orientation from its canonical frame, which is defined to be
/// looking along the -z axis with the +y axis as the up
/// direction.
GF_API
{{ MAT }}& SetLookAt(const GfVec3{{ SCL[0] }} &eyePoint,
const GfRotation &orientation);
/// Factors the matrix into 5 components:
/// \li \e M = r * s * -r * u * t
/// where
/// \li \e t is a translation.
/// \li \e u and \e r are rotations, and \e -r is the transpose
/// (inverse) of \e r. The \e u matrix may contain shear
/// information.
/// \li \e s is a scale.
/// Any projection information could be returned in matrix \e p,
/// but currently p is never modified.
///
/// Returns \c false if the matrix is singular (as determined by \e eps).
/// In that case, any zero scales in \e s are clamped to \e eps
/// to allow computation of \e u.
GF_API
bool Factor({{ MAT }}* r, GfVec3{{ SCL[0] }}* s, {{ MAT }}* u,
GfVec3{{ SCL[0] }}* t, {{ MAT }}* p,
{% if SCL == 'double' %}
{{ SCL }} eps = 1e-10) const;
{% else %}
{{ SCL }} eps = 1e-5) const;
{% endif %}
/// Returns the translation part of the matrix, defined as the first three
/// elements of the last row.
GfVec3{{ SCL[0] }} ExtractTranslation() const {
return GfVec3{{ SCL[0] }}(_mtx[3][0], _mtx[3][1], _mtx[3][2]);
}
/// Returns the rotation corresponding to this matrix. This works well
/// only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GF_API
GfRotation ExtractRotation() const;
/// Return the rotation corresponding to this matrix as a quaternion.
/// This works well only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GF_API
GfQuat{{ SCL[0] }} ExtractRotationQuat() const;
/// Decompose the rotation corresponding to this matrix about 3 orthogonal
/// axes. If the axes are not orthogonal, warnings will be spewed.
///
/// This is a convenience method that is equivalent to calling
/// ExtractRotation().Decompose().
GF_API
GfVec3{{ SCL[0] }} DecomposeRotation(const GfVec3{{ SCL[0] }} &axis0,
const GfVec3{{ SCL[0] }} &axis1,
const GfVec3{{ SCL[0] }} &axis2) const;
/// Returns the rotation corresponding to this matrix. This works well
/// only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GF_API
GfMatrix3{{ SCL[0] }} ExtractRotationMatrix() const;
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1.
GfVec3d Transform(const GfVec3d &vec) const {
return GfProject(GfVec4d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][3]", sep=" + ", num=3) }} + _mtx[3][3]));
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1. This is an overloaded method; it differs from the other version
/// in that it returns a different value type.
GfVec3f Transform(const GfVec3f &vec) const {
{% if SCL == 'float' %}
return (GfProject(GfVec4f(
{% else %}
return GfVec3f(GfProject(GfVec4d(
{% endif %}
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][3]", sep=" + ", num=3) }} + _mtx[3][3])));
}
/// Transforms row vector \e vec by the matrix, returning the result. This
/// treats the vector as a direction vector, so the translation
/// information in the matrix is ignored. That is, it treats the vector as
/// a 4-component vector whose fourth component is 0.
GfVec3d TransformDir(const GfVec3d &vec) const {
return GfVec3d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }});
}
/// Transforms row vector \e vec by the matrix, returning the result. This
/// treats the vector as a direction vector, so the translation
/// information in the matrix is ignored. That is, it treats the vector as
/// a 4-component vector whose fourth component is 0. This is an
/// overloaded method; it differs from the other version in that it
/// returns a different value type.
GfVec3f TransformDir(const GfVec3f &vec) const {
return GfVec3f(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }});
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1 and ignores the fourth column of the matrix (i.e. assumes it is
/// (0, 0, 0, 1)).
GfVec3d TransformAffine(const GfVec3d &vec) const {
return GfVec3d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2]);
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1 and ignores the fourth column of the matrix (i.e. assumes it is
/// (0, 0, 0, 1)).
GfVec3f TransformAffine(const GfVec3f &vec) const {
return GfVec3f(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2]);
}
/// @}
private:
/// Returns the determinant of the 3x3 submatrix specified by the three
/// given row and column indices (0-3 for each).
GF_API
double _GetDeterminant3(size_t row1, size_t row2, size_t row3,
size_t col1, size_t col2, size_t col3) const;
/// Diagonalizes the upper 3x3 matrix of a matrix known to be symmetric.
void _Jacobi3(GfVec3d *eigenvalues, GfVec3d eigenvectors[3]) const;
/// Set the 3x3 submatrix to the rotation given by a quaternion,
/// defined by the real component \p r and imaginary components \p i.
void _SetRotateFromQuat({{ SCL }} r, const GfVec3{{ SCL[0] }}& i);
{% endblock customXformFunctions %}