// // Copyright 2016 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // //////////////////////////////////////////////////////////////////////// // This file is generated by a script. Do not edit directly. Edit the // vec.template.h file to make changes. #ifndef PXR_BASE_GF_VEC3D_H #define PXR_BASE_GF_VEC3D_H /// \file gf/vec3d.h /// \ingroup group_gf_LinearAlgebra #include "pxr/pxr.h" #include "pxr/base/tf/diagnostic.h" #include "pxr/base/gf/api.h" #include "pxr/base/gf/limits.h" #include "pxr/base/gf/traits.h" #include "pxr/base/gf/math.h" #include #include #include #include PXR_NAMESPACE_OPEN_SCOPE class GfVec3d; template <> struct GfIsGfVec { static const bool value = true; }; /// \class GfVec3d /// \ingroup group_gf_LinearAlgebra /// /// Basic type for a vector of 3 double components. /// /// Represents a vector of 3 components of type \c double. /// It is intended to be fast and simple. /// class GfVec3d { public: /// Scalar element type and dimension. typedef double ScalarType; static const size_t dimension = 3; /// Default constructor does no initialization. GfVec3d() = default; /// Initialize all elements to a single value. constexpr explicit GfVec3d(double value) : _data{ value, value, value } { } /// Initialize all elements with explicit arguments. constexpr GfVec3d(double s0, double s1, double s2) : _data{ s0, s1, s2 } { } /// Construct with pointer to values. template constexpr explicit GfVec3d(Scl const *p) : _data{ p[0], p[1], p[2] } { } /// Implicitly convert from GfVec3f. GfVec3d(class GfVec3f const &other); /// Implicitly convert from GfVec3h. GfVec3d(class GfVec3h const &other); /// Implicitly convert from GfVec3i. GfVec3d(class GfVec3i const &other); /// Create a unit vector along the X-axis. static GfVec3d XAxis() { GfVec3d result(0); result[0] = 1; return result; } /// Create a unit vector along the Y-axis. static GfVec3d YAxis() { GfVec3d result(0); result[1] = 1; return result; } /// Create a unit vector along the Z-axis. static GfVec3d ZAxis() { GfVec3d result(0); result[2] = 1; return result; } /// Create a unit vector along the i-th axis, zero-based. Return the zero /// vector if \p i is greater than or equal to 3. static GfVec3d Axis(size_t i) { GfVec3d result(0); if (i < 3) result[i] = 1; return result; } /// Set all elements with passed arguments. GfVec3d &Set(double s0, double s1, double s2) { _data[0] = s0; _data[1] = s1; _data[2] = s2; return *this; } /// Set all elements with a pointer to data. GfVec3d &Set(double const *a) { return Set(a[0], a[1], a[2]); } /// Direct data access. double const *data() const { return _data; } double *data() { return _data; } double const *GetArray() const { return data(); } /// Indexing. double const &operator[](size_t i) const { return _data[i]; } double &operator[](size_t i) { return _data[i]; } /// Hash. friend inline size_t hash_value(GfVec3d const &vec) { size_t h = 0; boost::hash_combine(h, vec[0]); boost::hash_combine(h, vec[1]); boost::hash_combine(h, vec[2]); return h; } /// Equality comparison. bool operator==(GfVec3d const &other) const { return _data[0] == other[0] && _data[1] == other[1] && _data[2] == other[2]; } bool operator!=(GfVec3d const &other) const { return !(*this == other); } // TODO Add inequality for other vec types... /// Equality comparison. GF_API bool operator==(class GfVec3f const &other) const; /// Equality comparison. GF_API bool operator==(class GfVec3h const &other) const; /// Equality comparison. GF_API bool operator==(class GfVec3i const &other) const; /// Create a vec with negated elements. GfVec3d operator-() const { return GfVec3d(-_data[0], -_data[1], -_data[2]); } /// Addition. GfVec3d &operator+=(GfVec3d const &other) { _data[0] += other[0]; _data[1] += other[1]; _data[2] += other[2]; return *this; } friend GfVec3d operator+(GfVec3d const &l, GfVec3d const &r) { return GfVec3d(l) += r; } /// Subtraction. GfVec3d &operator-=(GfVec3d const &other) { _data[0] -= other[0]; _data[1] -= other[1]; _data[2] -= other[2]; return *this; } friend GfVec3d operator-(GfVec3d const &l, GfVec3d const &r) { return GfVec3d(l) -= r; } /// Multiplication by scalar. GfVec3d &operator*=(double s) { _data[0] *= s; _data[1] *= s; _data[2] *= s; return *this; } GfVec3d operator*(double s) const { return GfVec3d(*this) *= s; } friend GfVec3d operator*(double s, GfVec3d const &v) { return v * s; } /// Division by scalar. // TODO should divide by the scalar type. GfVec3d &operator/=(double s) { // TODO This should not multiply by 1/s, it should do the division. // Doing the division is more numerically stable when s is close to // zero. return *this *= (1.0 / s); } GfVec3d operator/(double s) const { return *this * (1.0 / s); } /// See GfDot(). double operator*(GfVec3d const &v) const { return _data[0] * v[0] + _data[1] * v[1] + _data[2] * v[2]; } /// Returns the projection of \p this onto \p v. That is: /// \code /// v * (*this * v) /// \endcode GfVec3d GetProjection(GfVec3d const &v) const { return v * (*this * v); } /// Returns the orthogonal complement of \p this->GetProjection(b). /// That is: /// \code /// *this - this->GetProjection(b) /// \endcode GfVec3d GetComplement(GfVec3d const &b) const { return *this - this->GetProjection(b); } /// Squared length. double GetLengthSq() const { return *this * *this; } /// Length double GetLength() const { // TODO should use GfSqrt. return sqrt(GetLengthSq()); } /// Normalizes the vector in place to unit length, returning the /// length before normalization. If the length of the vector is /// smaller than \p eps, then the vector is set to vector/\c eps. /// The original length of the vector is returned. See also GfNormalize(). /// /// \todo This was fixed for bug 67777. This is a gcc64 optimizer bug. /// By tickling the code, it no longer tries to write into /// an illegal memory address (in the code section of memory). double Normalize(double eps = GF_MIN_VECTOR_LENGTH) { // TODO this seems suspect... suggest dividing by length so long as // length is not zero. double length = GetLength(); *this /= (length > eps) ? length : eps; return length; } GfVec3d GetNormalized(double eps = GF_MIN_VECTOR_LENGTH) const { GfVec3d normalized(*this); normalized.Normalize(eps); return normalized; } /// Orthogonalize and optionally normalize a set of basis vectors. This /// uses an iterative method that is very stable even when the vectors are /// far from orthogonal (close to colinear). The number of iterations and /// thus the computation time does increase as the vectors become close to /// colinear, however. Returns a bool specifying whether the solution /// converged after a number of iterations. If it did not converge, the /// returned vectors will be as close as possible to orthogonal within the /// iteration limit. Colinear vectors will be unaltered, and the method /// will return false. GF_API static bool OrthogonalizeBasis( GfVec3d *tx, GfVec3d *ty, GfVec3d *tz, const bool normalize, double eps = GF_MIN_ORTHO_TOLERANCE); /// Sets \c v1 and \c v2 to unit vectors such that v1, v2 and *this are /// mutually orthogonal. If the length L of *this is smaller than \c eps, /// then v1 and v2 will have magnitude L/eps. As a result, the function /// delivers a continuous result as *this shrinks in length. GF_API void BuildOrthonormalFrame(GfVec3d *v1, GfVec3d *v2, double eps = GF_MIN_VECTOR_LENGTH) const; private: double _data[3]; }; /// Output a GfVec3d. /// \ingroup group_gf_DebuggingOutput GF_API std::ostream& operator<<(std::ostream &, GfVec3d const &); PXR_NAMESPACE_CLOSE_SCOPE #include "pxr/base/gf/vec3f.h" #include "pxr/base/gf/vec3h.h" #include "pxr/base/gf/vec3i.h" PXR_NAMESPACE_OPEN_SCOPE inline GfVec3d::GfVec3d(class GfVec3f const &other) { _data[0] = other[0]; _data[1] = other[1]; _data[2] = other[2]; } inline GfVec3d::GfVec3d(class GfVec3h const &other) { _data[0] = other[0]; _data[1] = other[1]; _data[2] = other[2]; } inline GfVec3d::GfVec3d(class GfVec3i const &other) { _data[0] = other[0]; _data[1] = other[1]; _data[2] = other[2]; } /// Returns component-wise multiplication of vectors \p v1 and \p v2. inline GfVec3d GfCompMult(GfVec3d const &v1, GfVec3d const &v2) { return GfVec3d( v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2] ); } /// Returns component-wise quotient of vectors \p v1 and \p v2. inline GfVec3d GfCompDiv(GfVec3d const &v1, GfVec3d const &v2) { return GfVec3d( v1[0] / v2[0], v1[1] / v2[1], v1[2] / v2[2] ); } /// Returns the dot (inner) product of two vectors. inline double GfDot(GfVec3d const &v1, GfVec3d const &v2) { return v1 * v2; } /// Returns the geometric length of \c v. inline double GfGetLength(GfVec3d const &v) { return v.GetLength(); } /// Normalizes \c *v in place to unit length, returning the length before /// normalization. If the length of \c *v is smaller than \p eps then \c *v is /// set to \c *v/eps. The original length of \c *v is returned. inline double GfNormalize(GfVec3d *v, double eps = GF_MIN_VECTOR_LENGTH) { return v->Normalize(eps); } /// Returns a normalized (unit-length) vector with the same direction as \p v. /// If the length of this vector is smaller than \p eps, the vector divided by /// \p eps is returned. inline GfVec3d GfGetNormalized(GfVec3d const &v, double eps = GF_MIN_VECTOR_LENGTH) { return v.GetNormalized(eps); } /// Returns the projection of \p a onto \p b. That is: /// \code /// b * (a * b) /// \endcode inline GfVec3d GfGetProjection(GfVec3d const &a, GfVec3d const &b) { return a.GetProjection(b); } /// Returns the orthogonal complement of \p a.GetProjection(b). That is: /// \code /// a - a.GetProjection(b) /// \endcode inline GfVec3d GfGetComplement(GfVec3d const &a, GfVec3d const &b) { return a.GetComplement(b); } /// Tests for equality within a given tolerance, returning \c true if the /// length of the difference vector is less than or equal to \p tolerance. inline bool GfIsClose(GfVec3d const &v1, GfVec3d const &v2, double tolerance) { GfVec3d delta = v1 - v2; return delta.GetLengthSq() <= tolerance * tolerance; } GF_API bool GfOrthogonalizeBasis(GfVec3d *tx, GfVec3d *ty, GfVec3d *tz, bool normalize, double eps = GF_MIN_ORTHO_TOLERANCE); GF_API void GfBuildOrthonormalFrame(GfVec3d const &v0, GfVec3d* v1, GfVec3d* v2, double eps = GF_MIN_VECTOR_LENGTH); /// Returns the cross product of \p v1 and \p v2. inline GfVec3d GfCross(GfVec3d const &v1, GfVec3d const &v2) { return GfVec3d( v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0]); } /// Returns the cross product of \p v1 and \p v2. /// \see GfCross() inline GfVec3d operator^(GfVec3d const &v1, GfVec3d const &v2) { return GfCross(v1, v2); } /// Spherical linear interpolation in three dimensions. GF_API GfVec3d GfSlerp(double alpha, GfVec3d const &v0, GfVec3d const &v1); PXR_NAMESPACE_CLOSE_SCOPE #endif // PXR_BASE_GF_VEC3D_H