// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ #include "utils.h" #include "pxr/pxr.h" PXR_NAMESPACE_OPEN_SCOPE namespace pxr_double_conversion { class DoubleToStringConverter { public: // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the // function returns false. static const int kMaxFixedDigitsBeforePoint = 60; static const int kMaxFixedDigitsAfterPoint = 60; // When calling ToExponential with a requested_digits // parameter > kMaxExponentialDigits then the function returns false. static const int kMaxExponentialDigits = 120; // When calling ToPrecision with a requested_digits // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits // then the function returns false. static const int kMinPrecisionDigits = 1; static const int kMaxPrecisionDigits = 120; enum Flags { NO_FLAGS = 0, EMIT_POSITIVE_EXPONENT_SIGN = 1, EMIT_TRAILING_DECIMAL_POINT = 2, EMIT_TRAILING_ZERO_AFTER_POINT = 4, UNIQUE_ZERO = 8 }; // Flags should be a bit-or combination of the possible Flags-enum. // - NO_FLAGS: no special flags. // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent // form, emits a '+' for positive exponents. Example: 1.2e+2. // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is // converted into decimal format then a trailing decimal point is appended. // Example: 2345.0 is converted to "2345.". // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point // emits a trailing '0'-character. This flag requires the // EXMIT_TRAILING_DECIMAL_POINT flag. // Example: 2345.0 is converted to "2345.0". // - UNIQUE_ZERO: "-0.0" is converted to "0.0". // // Infinity symbol and nan_symbol provide the string representation for these // special values. If the string is NULL and the special value is encountered // then the conversion functions return false. // // The exponent_character is used in exponential representations. It is // usually 'e' or 'E'. // // When converting to the shortest representation the converter will // represent input numbers in decimal format if they are in the interval // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ // (lower boundary included, greater boundary excluded). // Example: with decimal_in_shortest_low = -6 and // decimal_in_shortest_high = 21: // ToShortest(0.000001) -> "0.000001" // ToShortest(0.0000001) -> "1e-7" // ToShortest(111111111111111111111.0) -> "111111111111111110000" // ToShortest(100000000000000000000.0) -> "100000000000000000000" // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" // // When converting to precision mode the converter may add // max_leading_padding_zeroes before returning the number in exponential // format. // Example with max_leading_padding_zeroes_in_precision_mode = 6. // ToPrecision(0.0000012345, 2) -> "0.0000012" // ToPrecision(0.00000012345, 2) -> "1.2e-7" // Similarily the converter may add up to // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid // returning an exponential representation. A zero added by the // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: // ToPrecision(230.0, 2) -> "230" // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. DoubleToStringConverter(int flags, const char* infinity_symbol, const char* nan_symbol, char exponent_character, int decimal_in_shortest_low, int decimal_in_shortest_high, int max_leading_padding_zeroes_in_precision_mode, int max_trailing_padding_zeroes_in_precision_mode) : flags_(flags), infinity_symbol_(infinity_symbol), nan_symbol_(nan_symbol), exponent_character_(exponent_character), decimal_in_shortest_low_(decimal_in_shortest_low), decimal_in_shortest_high_(decimal_in_shortest_high), max_leading_padding_zeroes_in_precision_mode_( max_leading_padding_zeroes_in_precision_mode), max_trailing_padding_zeroes_in_precision_mode_( max_trailing_padding_zeroes_in_precision_mode) { // When 'trailing zero after the point' is set, then 'trailing point' // must be set too. ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); } // Returns a converter following the EcmaScript specification. static const DoubleToStringConverter& EcmaScriptConverter(); // Computes the shortest string of digits that correctly represent the input // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high // (see constructor) it then either returns a decimal representation, or an // exponential representation. // Example with decimal_in_shortest_low = -6, // decimal_in_shortest_high = 21, // EMIT_POSITIVE_EXPONENT_SIGN activated, and // EMIT_TRAILING_DECIMAL_POINT deactived: // ToShortest(0.000001) -> "0.000001" // ToShortest(0.0000001) -> "1e-7" // ToShortest(111111111111111111111.0) -> "111111111111111110000" // ToShortest(100000000000000000000.0) -> "100000000000000000000" // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" // // Note: the conversion may round the output if the returned string // is accurate enough to uniquely identify the input-number. // For example the most precise representation of the double 9e59 equals // "899999999999999918767229449717619953810131273674690656206848", but // the converter will return the shorter (but still correct) "9e59". // // Returns true if the conversion succeeds. The conversion always succeeds // except when the input value is special and no infinity_symbol or // nan_symbol has been given to the constructor. bool ToShortest(double value, StringBuilder* result_builder) const { return ToShortestIeeeNumber(value, result_builder, SHORTEST); } // Same as ToShortest, but for single-precision floats. bool ToShortestSingle(float value, StringBuilder* result_builder) const { return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); } // Computes a decimal representation with a fixed number of digits after the // decimal point. The last emitted digit is rounded. // // Examples: // ToFixed(3.12, 1) -> "3.1" // ToFixed(3.1415, 3) -> "3.142" // ToFixed(1234.56789, 4) -> "1234.5679" // ToFixed(1.23, 5) -> "1.23000" // ToFixed(0.1, 4) -> "0.1000" // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" // ToFixed(0.1, 17) -> "0.10000000000000001" // // If requested_digits equals 0, then the tail of the result depends on // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. // Examples, for requested_digits == 0, // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be // - false and false: then 123.45 -> 123 // 0.678 -> 1 // - true and false: then 123.45 -> 123. // 0.678 -> 1. // - true and true: then 123.45 -> 123.0 // 0.678 -> 1.0 // // Returns true if the conversion succeeds. The conversion always succeeds // except for the following cases: // - the input value is special and no infinity_symbol or nan_symbol has // been provided to the constructor, // - 'value' > 10^kMaxFixedDigitsBeforePoint, or // - 'requested_digits' > kMaxFixedDigitsAfterPoint. // The last two conditions imply that the result will never contain more than // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters // (one additional character for the sign, and one for the decimal point). bool ToFixed(double value, int requested_digits, StringBuilder* result_builder) const; // Computes a representation in exponential format with requested_digits // after the decimal point. The last emitted digit is rounded. // If requested_digits equals -1, then the shortest exponential representation // is computed. // // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and // exponent_character set to 'e'. // ToExponential(3.12, 1) -> "3.1e0" // ToExponential(5.0, 3) -> "5.000e0" // ToExponential(0.001, 2) -> "1.00e-3" // ToExponential(3.1415, -1) -> "3.1415e0" // ToExponential(3.1415, 4) -> "3.1415e0" // ToExponential(3.1415, 3) -> "3.142e0" // ToExponential(123456789000000, 3) -> "1.235e14" // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" // ToExponential(1000000000000000019884624838656.0, 32) -> // "1.00000000000000001988462483865600e30" // ToExponential(1234, 0) -> "1e3" // // Returns true if the conversion succeeds. The conversion always succeeds // except for the following cases: // - the input value is special and no infinity_symbol or nan_symbol has // been provided to the constructor, // - 'requested_digits' > kMaxExponentialDigits. // The last condition implies that the result will never contain more than // kMaxExponentialDigits + 8 characters (the sign, the digit before the // decimal point, the decimal point, the exponent character, the // exponent's sign, and at most 3 exponent digits). bool ToExponential(double value, int requested_digits, StringBuilder* result_builder) const; // Computes 'precision' leading digits of the given 'value' and returns them // either in exponential or decimal format, depending on // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the // constructor). // The last computed digit is rounded. // // Example with max_leading_padding_zeroes_in_precision_mode = 6. // ToPrecision(0.0000012345, 2) -> "0.0000012" // ToPrecision(0.00000012345, 2) -> "1.2e-7" // Similarily the converter may add up to // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid // returning an exponential representation. A zero added by the // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: // ToPrecision(230.0, 2) -> "230" // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no // EMIT_TRAILING_ZERO_AFTER_POINT: // ToPrecision(123450.0, 6) -> "123450" // ToPrecision(123450.0, 5) -> "123450" // ToPrecision(123450.0, 4) -> "123500" // ToPrecision(123450.0, 3) -> "123000" // ToPrecision(123450.0, 2) -> "1.2e5" // // Returns true if the conversion succeeds. The conversion always succeeds // except for the following cases: // - the input value is special and no infinity_symbol or nan_symbol has // been provided to the constructor, // - precision < kMinPericisionDigits // - precision > kMaxPrecisionDigits // The last condition implies that the result will never contain more than // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the // exponent character, the exponent's sign, and at most 3 exponent digits). bool ToPrecision(double value, int precision, StringBuilder* result_builder) const; enum DtoaMode { // Produce the shortest correct representation. // For example the output of 0.299999999999999988897 is (the less accurate // but correct) 0.3. SHORTEST, // Same as SHORTEST, but for single-precision floats. SHORTEST_SINGLE, // Produce a fixed number of digits after the decimal point. // For instance fixed(0.1, 4) becomes 0.1000 // If the input number is big, the output will be big. FIXED, // Fixed number of digits (independent of the decimal point). PRECISION }; // The maximal number of digits that are needed to emit a double in base 10. // A higher precision can be achieved by using more digits, but the shortest // accurate representation of any double will never use more digits than // kBase10MaximalLength. // Note that DoubleToAscii null-terminates its input. So the given buffer // should be at least kBase10MaximalLength + 1 characters long. static const int kBase10MaximalLength = 17; // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v' // after it has been casted to a single-precision float. That is, in this // mode static_cast(v) must not be NaN, +Infinity or -Infinity. // // The result should be interpreted as buffer * 10^(point-length). // // The output depends on the given mode: // - SHORTEST: produce the least amount of digits for which the internal // identity requirement is still satisfied. If the digits are printed // (together with the correct exponent) then reading this number will give // 'v' again. The buffer will choose the representation that is closest to // 'v'. If there are two at the same distance, than the one farther away // from 0 is chosen (halfway cases - ending with 5 - are rounded up). // In this mode the 'requested_digits' parameter is ignored. // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. // - FIXED: produces digits necessary to print a given number with // 'requested_digits' digits after the decimal point. The produced digits // might be too short in which case the caller has to fill the remainder // with '0's. // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. // Halfway cases are rounded towards +/-Infinity (away from 0). The call // toFixed(0.15, 2) thus returns buffer="2", point=0. // The returned buffer may contain digits that would be truncated from the // shortest representation of the input. // - PRECISION: produces 'requested_digits' where the first digit is not '0'. // Even though the length of produced digits usually equals // 'requested_digits', the function is allowed to return fewer digits, in // which case the caller has to fill the missing digits with '0's. // Halfway cases are again rounded away from 0. // DoubleToAscii expects the given buffer to be big enough to hold all // digits and a terminating null-character. In SHORTEST-mode it expects a // buffer of at least kBase10MaximalLength + 1. In all other modes the // requested_digits parameter and the padding-zeroes limit the size of the // output. Don't forget the decimal point, the exponent character and the // terminating null-character when computing the maximal output size. // The given length is only used in debug mode to ensure the buffer is big // enough. static void DoubleToAscii(double v, DtoaMode mode, int requested_digits, char* buffer, int buffer_length, bool* sign, int* length, int* point); private: // Implementation for ToShortest and ToShortestSingle. bool ToShortestIeeeNumber(double value, StringBuilder* result_builder, DtoaMode mode) const; // If the value is a special value (NaN or Infinity) constructs the // corresponding string using the configured infinity/nan-symbol. // If either of them is NULL or the value is not special then the // function returns false. bool HandleSpecialValues(double value, StringBuilder* result_builder) const; // Constructs an exponential representation (i.e. 1.234e56). // The given exponent assumes a decimal point after the first decimal digit. void CreateExponentialRepresentation(const char* decimal_digits, int length, int exponent, StringBuilder* result_builder) const; // Creates a decimal representation (i.e 1234.5678). void CreateDecimalRepresentation(const char* decimal_digits, int length, int decimal_point, int digits_after_point, StringBuilder* result_builder) const; const int flags_; const char* const infinity_symbol_; const char* const nan_symbol_; const char exponent_character_; const int decimal_in_shortest_low_; const int decimal_in_shortest_high_; const int max_leading_padding_zeroes_in_precision_mode_; const int max_trailing_padding_zeroes_in_precision_mode_; DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); }; class StringToDoubleConverter { public: // Enumeration for allowing octals and ignoring junk when converting // strings to numbers. enum Flags { NO_FLAGS = 0, ALLOW_HEX = 1, ALLOW_OCTALS = 2, ALLOW_TRAILING_JUNK = 4, ALLOW_LEADING_SPACES = 8, ALLOW_TRAILING_SPACES = 16, ALLOW_SPACES_AFTER_SIGN = 32 }; // Flags should be a bit-or combination of the possible Flags-enum. // - NO_FLAGS: no special flags. // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. // Ex: StringToDouble("0x1234") -> 4660.0 // In StringToDouble("0x1234.56") the characters ".56" are trailing // junk. The result of the call is hence dependent on // the ALLOW_TRAILING_JUNK flag and/or the junk value. // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, // the string will not be parsed as "0" followed by junk. // // - ALLOW_OCTALS: recognizes the prefix "0" for octals: // If a sequence of octal digits starts with '0', then the number is // read as octal integer. Octal numbers may only be integers. // Ex: StringToDouble("01234") -> 668.0 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal // // digits. // In StringToDouble("01234.56") the characters ".56" are trailing // junk. The result of the call is hence dependent on // the ALLOW_TRAILING_JUNK flag and/or the junk value. // In StringToDouble("01234e56") the characters "e56" are trailing // junk, too. // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of // a double literal. // - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces, // new-lines, and tabs. // - ALLOW_TRAILING_SPACES: ignore trailing whitespace. // - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign. // Ex: StringToDouble("- 123.2") -> -123.2. // StringToDouble("+ 123.2") -> 123.2 // // empty_string_value is returned when an empty string is given as input. // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string // containing only spaces is converted to the 'empty_string_value', too. // // junk_string_value is returned when // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not // part of a double-literal) is found. // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a // double literal. // // infinity_symbol and nan_symbol are strings that are used to detect // inputs that represent infinity and NaN. They can be null, in which case // they are ignored. // The conversion routine first reads any possible signs. Then it compares the // following character of the input-string with the first character of // the infinity, and nan-symbol. If either matches, the function assumes, that // a match has been found, and expects the following input characters to match // the remaining characters of the special-value symbol. // This means that the following restrictions apply to special-value symbols: // - they must not start with signs ('+', or '-'), // - they must not have the same first character. // - they must not start with digits. // // Examples: // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, // empty_string_value = 0.0, // junk_string_value = NaN, // infinity_symbol = "infinity", // nan_symbol = "nan": // StringToDouble("0x1234") -> 4660.0. // StringToDouble("0x1234K") -> 4660.0. // StringToDouble("") -> 0.0 // empty_string_value. // StringToDouble(" ") -> NaN // junk_string_value. // StringToDouble(" 1") -> NaN // junk_string_value. // StringToDouble("0x") -> NaN // junk_string_value. // StringToDouble("-123.45") -> -123.45. // StringToDouble("--123.45") -> NaN // junk_string_value. // StringToDouble("123e45") -> 123e45. // StringToDouble("123E45") -> 123e45. // StringToDouble("123e+45") -> 123e45. // StringToDouble("123E-45") -> 123e-45. // StringToDouble("123e") -> 123.0 // trailing junk ignored. // StringToDouble("123e-") -> 123.0 // trailing junk ignored. // StringToDouble("+NaN") -> NaN // NaN string literal. // StringToDouble("-infinity") -> -inf. // infinity literal. // StringToDouble("Infinity") -> NaN // junk_string_value. // // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, // empty_string_value = 0.0, // junk_string_value = NaN, // infinity_symbol = NULL, // nan_symbol = NULL: // StringToDouble("0x1234") -> NaN // junk_string_value. // StringToDouble("01234") -> 668.0. // StringToDouble("") -> 0.0 // empty_string_value. // StringToDouble(" ") -> 0.0 // empty_string_value. // StringToDouble(" 1") -> 1.0 // StringToDouble("0x") -> NaN // junk_string_value. // StringToDouble("0123e45") -> NaN // junk_string_value. // StringToDouble("01239E45") -> 1239e45. // StringToDouble("-infinity") -> NaN // junk_string_value. // StringToDouble("NaN") -> NaN // junk_string_value. StringToDoubleConverter(int flags, double empty_string_value, double junk_string_value, const char* infinity_symbol, const char* nan_symbol) : flags_(flags), empty_string_value_(empty_string_value), junk_string_value_(junk_string_value), infinity_symbol_(infinity_symbol), nan_symbol_(nan_symbol) { } // Performs the conversion. // The output parameter 'processed_characters_count' is set to the number // of characters that have been processed to read the number. // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included // in the 'processed_characters_count'. Trailing junk is never included. double StringToDouble(const char* buffer, int length, int* processed_characters_count) const; // Same as StringToDouble above but for 16 bit characters. double StringToDouble(const uc16* buffer, int length, int* processed_characters_count) const; // Same as StringToDouble but reads a float. // Note that this is not equivalent to static_cast(StringToDouble(...)) // due to potential double-rounding. float StringToFloat(const char* buffer, int length, int* processed_characters_count) const; // Same as StringToFloat above but for 16 bit characters. float StringToFloat(const uc16* buffer, int length, int* processed_characters_count) const; private: const int flags_; const double empty_string_value_; const double junk_string_value_; const char* const infinity_symbol_; const char* const nan_symbol_; template double StringToIeee(Iterator start_pointer, int length, bool read_as_double, int* processed_characters_count) const; DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); }; } // namespace pxr_double_conversion PXR_NAMESPACE_CLOSE_SCOPE #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_