// // Copyright 2016 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "pxr/imaging/glf/ptexMipmapTextureLoader.h" #include "pxr/base/arch/fileSystem.h" #include "pxr/base/tf/diagnostic.h" #include #include #include #include #include #include PXR_NAMESPACE_OPEN_SCOPE // sample neighbor pixels and populate around blocks void GlfPtexMipmapTextureLoader::Block::guttering( GlfPtexMipmapTextureLoader *loader, PtexTexture *ptex, int level, int wid, int hei, unsigned char *pptr, int bpp, int stride) { int lineBufferSize = std::max(wid, hei) * bpp; unsigned char * lineBuffer = new unsigned char[lineBufferSize]; int numEdges = ptex->meshType() == Ptex::mt_triangle ? 3 : 4; for (int edge = 0; edge < numEdges; edge++) { int len = (edge == 0 || edge == 2) ? wid : hei; loader->sampleNeighbor(lineBuffer, this->index, edge, len, bpp); unsigned char *s = lineBuffer, *d; for (int j = 0; j < len; ++j) { d = pptr; switch (edge) { case Ptex::e_bottom: d += bpp * (j + 1); break; case Ptex::e_right: d += stride * (j + 1) + bpp * (wid+1); break; case Ptex::e_top: d += stride * (hei+1) + bpp*(len-j); break; case Ptex::e_left: d += stride * (len-j); break; } for (int k = 0; k < bpp; k++) *d++ = *s++; } } delete[] lineBuffer; // fix corner pixels int numchannels = ptex->numChannels(); float *accumPixel = new float[numchannels]; int uv[4][2] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; for (int edge = 0; edge < numEdges; edge++) { int du = uv[edge][0]; int dv = uv[edge][1]; /* There are 3 cases when filling a corner pixel on gutter. case 1: Regular 4 valence We already have correct 'B' and 'C' pixels by edge resampling above. so here only one more pixel 'D' is needed, and it will be placed on the gutter corner. +-----+-----+ | | |<-current | B|A | +-----*-----+ | D|C | | | | +-----+-----+ case 2: T-vertex case (note that this doesn't mean 3 valence) If the current face comes from non-quad root face, there could be a T-vertex on its corner. Just like case 1, need to fill border corner with pixel 'D'. +-----+-----+ | | |<-current | B|A | | *-----+ | D|C | | | | +-----+-----+ case 3: Other than 4 valence case (everything else, including boundary) Since guttering pixels are placed on the border of each ptex faces, it's not possible to store more than 4 pixels at a coner for a reasonable interpolation. In this case, we need to average all corner pixels and overwrite with an averaged value, so that every face vertex picks the same value. +---+---+ | | |<-current | B|A | +---*---| | D/E\C | | / \ | |/ \| +-------+ */ // seamless mipmap only works with square faces. if (loader->getCornerPixel(accumPixel, numchannels, this->index, edge, (int8_t)(this->ulog2-level))) { // case1, case 2 if (edge == 1 || edge == 2) du += wid; if (edge == 2 || edge == 3) dv += hei; unsigned char *d = pptr + dv*stride + du*bpp; Ptex::ConvertFromFloat(d, accumPixel, ptex->dataType(), numchannels); } else { // case 3, set accumPixel to the corner 4 pixels if (edge == 1 || edge == 2) du += wid - 1; if (edge == 2 || edge == 3) dv += hei - 1; for (int x = 0; x < 2; ++x) { for (int y = 0; y < 2; ++y) { unsigned char *d = pptr + (dv+x)*stride + (du+y)*bpp; Ptex::ConvertFromFloat(d, accumPixel, ptex->dataType(), numchannels); } } } } delete[] accumPixel; } void GlfPtexMipmapTextureLoader::Block::Generate( GlfPtexMipmapTextureLoader *loader, PtexTexture *ptex, unsigned char *destination, int bpp, int wid, int maxLevels) { const Ptex::FaceInfo &faceInfo = ptex->getFaceInfo(index); int stride = bpp * wid; int ulog2_ = this->ulog2; int vlog2_ = this->vlog2; int level = 0; int uofs = u, vofs = v; // The minimum size of non-subface is 4x4, so that it matches with adjacent // 2x2 subfaces. int limit = faceInfo.isSubface() ? 1 : 2; // but if the base size is already less than limit, we'd like to pick it // instead of nothing. limit = std::min(std::min(limit, ulog2_), vlog2_); while (ulog2_ >= limit && vlog2_ >= limit && (maxLevels == -1 || level <= maxLevels)) { if (level % 2 == 1) uofs += (1<<(ulog2_+1))+2; if ((level > 0) && (level % 2 == 0)) vofs += (1<<(vlog2_+1)) + 2; unsigned char *dst = destination + vofs * stride + uofs * bpp; unsigned char *dstData = destination + (vofs + 1) * stride + (uofs + 1) * bpp; ptex->getData(index, dstData, stride, Ptex::Res(ulog2_, vlog2_)); guttering(loader, ptex, level, 1<width <= width) && (block->height <= height); } }; typedef std::list BlockList; Page(uint16_t width, uint16_t height) { _slots.push_back(Slot(0, 0, width, height)); } bool IsFull() const { return _slots.empty(); } // true when the block "b" is successfully added to this page : // // |--------------------------| |------------|-------------| // | | |............| | // | | |............| | // | | |.... B .....| Right Slot | // | | |............| | // | | |............| | // | | |------------|-------------| // | Original Slot | ==> | | // | | | | // | | | Bottom Slot | // | | | | // | | | | // |--------------------------| |--------------------------| // bool AddBlock(Block *block, const SlotLimit &limit) { for (SlotList::iterator it = _slots.begin(); it != _slots.end(); ++it) { if (it->Fits(block)) { _blocks.push_back(block); block->u = it->u; block->v = it->v; // add new slot to the right if (it->width > block->width) { // first check if the remainder block would even // be possible to fill before adding it. uint16_t w = it->width - block->width; uint16_t h = block->height; if (uint32_t(w * h) >= limit.numTexels && w >= limit.width && h >= limit.height) { _slots.push_front(Slot(it->u + block->width, it->v, w, h)); } } // add new slot to the bottom if (it->height > block->height) { // first check if the remainder block would even // be possible to fill before adding it. uint16_t w = it->width; uint16_t h = (it->height - block->height); if (uint32_t(w * h) >= limit.numTexels && w >= limit.width && h >= limit.height) { _slots.push_back(Slot(it->u, it->v + block->height, w, h)); } } _slots.erase(it); return true; } } return false; } void Generate(GlfPtexMipmapTextureLoader *loader, PtexTexture *ptex, unsigned char *destination, int bpp, int width, int maxLevels) { for (BlockList::iterator it = _blocks.begin(); it != _blocks.end(); ++it) { (*it)->Generate(loader, ptex, destination, bpp, width, maxLevels); } } const BlockList &GetBlocks() const { return _blocks; } void Dump() const { for (BlockList::const_iterator it = _blocks.begin(); it != _blocks.end(); ++it) { printf(" (%d, %d) %d x %d\n", (*it)->u, (*it)->v, (*it)->width, (*it)->height); } } private: BlockList _blocks; typedef std::list SlotList; SlotList _slots; }; // --------------------------------------------------------------------------- // Utility class for Ptex corner iteration class GlfPtexMipmapTextureLoader::CornerIterator { public: CornerIterator(PtexTexture *ptex, int face, int edge, int8_t reslog2) : _ptex(ptex), _startFace(face), _startEdge(edge), _currentFace(face), _currentEdge(edge), _reslog2(reslog2), _clockWise(true), _mid(false), _done(false), _isBoundary(true) { _numChannels = _ptex->numChannels(); _currentInfo = _ptex->getFaceInfo(_currentFace); if (_currentInfo.isSubface()) ++_reslog2; } int GetCurrentFace() const { return _currentFace; } void GetPixel(float *resultPixel) { int8_t r = (int8_t)(_currentInfo.isSubface() ? _reslog2 - 1 : _reslog2); // limit to the maximum ptex resolution r = std::min(std::min(r, _currentInfo.res.ulog2), _currentInfo.res.vlog2); Ptex::Res res(r, r); int uv[4][2] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; int u = uv[_currentEdge][0] * (res.u()-1); int v = uv[_currentEdge][1] * (res.v()-1); _ptex->getPixel(_currentFace, u, v, resultPixel, 0, _numChannels, res); } bool IsDone() const { return _done; } bool IsSubface() const { return _currentInfo.isSubface(); } bool IsBoundary() const { return _isBoundary; } void Next() { if (_done) return; // next face Ptex::FaceInfo info = _ptex->getFaceInfo(_currentFace); if (_clockWise) { _currentFace = info.adjface(_currentEdge); if (_mid) { _currentFace = _ptex->getFaceInfo(_currentFace).adjface(2); _currentEdge = 1; _mid = false; } else if (info.isSubface() && (!_ptex->getFaceInfo(_currentFace).isSubface()) && _currentEdge == 3) { _mid = true; _currentEdge = info.adjedge(_currentEdge); } else { _mid = false; _currentEdge = info.adjedge(_currentEdge); _currentEdge = (_currentEdge+1)%4; } } else { _currentFace = info.adjface((_currentEdge+3)%4); _currentEdge = info.adjedge((_currentEdge+3)%4); } if (_currentFace == -1) { // border case. if (_clockWise) { // reset position and restart counter clock wise Ptex::FaceInfo sinfo = _ptex->getFaceInfo(_startFace); _currentFace = sinfo.adjface((_startEdge+3)%4); _currentEdge = sinfo.adjedge((_startEdge+3)%4); _clockWise = false; } else { // end _done = true; return; } } Ptex::FaceInfo nextFaceInfo = _ptex->getFaceInfo(_currentFace); if ((!_clockWise) && (!info.isSubface()) && (nextFaceInfo.isSubface())) { // needs tricky traverse for boundary subface... if (_currentEdge == 3) { _currentFace = nextFaceInfo.adjface(2); _currentEdge = 0; } } if (_currentFace == -1) { _done = true; return; } if (_currentFace == _startFace) { _done = true; _isBoundary = false; return; } _currentInfo = _ptex->getFaceInfo(_currentFace); } private: PtexTexture *_ptex; int _numChannels; int _startFace, _startEdge; int _currentFace, _currentEdge; int8_t _reslog2; bool _clockWise; bool _mid; bool _done; bool _isBoundary; Ptex::FaceInfo _currentInfo; }; // --------------------------------------------------------------------------- GlfPtexMipmapTextureLoader::GlfPtexMipmapTextureLoader(PtexTexture *ptex, int maxNumPages, int maxLevels, size_t targetMemory, bool seamlessMipmap) : _ptex(ptex), _maxLevels(maxLevels), _bpp(0), _pageWidth(0), _pageHeight(0), _texelBuffer(NULL), _layoutBuffer(NULL), _memoryUsage(0) { // byte per pixel _bpp = ptex->numChannels() * Ptex::DataSize(ptex->dataType()); int numFaces = ptex->numFaces(); _blocks.resize(numFaces); for (int i = 0; i < numFaces; ++i) { const Ptex::FaceInfo &faceInfo = ptex->getFaceInfo(i); _blocks[i].index = i; if (seamlessMipmap) { // need to squarize ptex face unsigned char s = std::min(faceInfo.res.ulog2, faceInfo.res.vlog2); _blocks[i].SetSize(s, s, _maxLevels != 0); } else { _blocks[i].SetSize(faceInfo.res.ulog2, faceInfo.res.vlog2, _maxLevels != 0); } } optimizePacking(maxNumPages, targetMemory); generateBuffers(); } GlfPtexMipmapTextureLoader::~GlfPtexMipmapTextureLoader() { for (size_t i = 0; i < _pages.size(); ++i) { delete _pages[i]; } delete _texelBuffer; delete _layoutBuffer; } // resample border texels for guttering // int GlfPtexMipmapTextureLoader::resampleBorder(int face, int edgeId, unsigned char *result, int dstLength, int bpp, float srcStart, float srcEnd) { TF_VERIFY(static_cast(face) < _blocks.size()); Ptex::Res res(_blocks[face].ulog2, _blocks[face].vlog2); int edgeLength = (edgeId == 0 || edgeId == 2) ? res.u() : res.v(); int srcOffset = (int)(srcStart*edgeLength); int srcLength = (int)((srcEnd-srcStart)*edgeLength); if (dstLength >= srcLength) { PtexFaceData * data = _ptex->getData(face, res); if (!data) { // XXX:validation // We should add a validation step to ensure we don't have missing // face data and that the format is right (quad vs tri). TF_WARN("Ptex missing texture face for face %d at res (%d x %d)", face, res.u(), res.v()); return srcLength; } // copy or up sampling (nearest) unsigned char *border = new unsigned char[bpp*srcLength]; // order of the result will be flipped to match adjacent pixel order for (int i = 0; i < srcLength; ++i) { int u = 0, v = 0; if (edgeId == Ptex::e_bottom) { u = edgeLength-1-(i+srcOffset); v = 0; } else if (edgeId == Ptex::e_right) { u = res.u()-1; v = edgeLength-1-(i+srcOffset); } else if (edgeId == Ptex::e_top) { u = i+srcOffset; v = res.v()-1; } else if (edgeId == Ptex::e_left) { u = 0; v = i+srcOffset; } data->getPixel(u, v, &border[i*bpp]); } // nearest resample to fit dstLength for (int i = 0; i < dstLength; ++i) { for (int j = 0; j < bpp; j++) { result[i*bpp+j] = border[(i*srcLength/dstLength)*bpp+j]; } } delete[] border; data->release(); } else { // down sampling while (srcLength > dstLength && res.ulog2 && res.vlog2) { --res.ulog2; --res.vlog2; srcLength /= 2; } PtexFaceData * data = _ptex->getData(face, res); if (!data) { // XXX:validation // We should add a validation step to ensure we don't have missing // face data and that the format is right (quad vs tri). TF_WARN("Ptex missing texture face for face %d at res (%d x %d)", face, res.u(), res.v()); return srcLength; } unsigned char *border = new unsigned char[bpp*srcLength]; edgeLength = (edgeId == 0 || edgeId == 2) ? res.u() : res.v(); srcOffset = (int)(srcStart*edgeLength); for (int i = 0; i < dstLength; ++i) { int u = 0, v = 0; if (edgeId == Ptex::e_bottom) { u = edgeLength-1-(i+srcOffset); v = 0; } else if (edgeId == Ptex::e_right) { u = res.u() - 1; v = edgeLength-1-(i+srcOffset); } else if (edgeId == Ptex::e_top) { u = i+srcOffset; v = res.v() - 1; } else if (edgeId == Ptex::e_left) { u = 0; v = i+srcOffset; } data->getPixel(u, v, &border[i*bpp]); for (int j = 0; j < bpp; ++j) { result[i*bpp+j] = border[i*bpp+j]; } } delete[] border; data->release(); } return srcLength; } // flip order of pixel buffer static void flipBuffer(unsigned char *buffer, int length, int bpp) { for (int i = 0; i < length/2; ++i) { for (int j = 0; j < bpp; j++) { std::swap(buffer[i*bpp+j], buffer[(length-1-i)*bpp+j]); } } } // sample neighbor face's edge void GlfPtexMipmapTextureLoader::sampleNeighbor(unsigned char *border, int face, int edge, int length, int bpp) { const Ptex::FaceInfo &fi = _ptex->getFaceInfo(face); // copy adjacent borders int adjface = fi.adjface(edge); if (adjface != -1) { int ae = fi.adjedge(edge); if (!fi.isSubface() && _ptex->getFaceInfo(adjface).isSubface()) { /* nonsubface -> subface (1:0.5) see http://ptex.us/adjdata.html for more detail +------------------+ | face | +--------edge------+ | adj face | | +----------+-------+ */ if (_ptex->meshType() == Ptex::mt_quad) { resampleBorder(adjface, ae, border, length/2, bpp); const Ptex::FaceInfo &sfi1 = _ptex->getFaceInfo(adjface); adjface = sfi1.adjface((ae+3)%4); ae = (sfi1.adjedge((ae+3)%4)+3)%4; resampleBorder(adjface, ae, border+(length/2*bpp), length/2, bpp); } else { TF_WARN("Assuming quad mesh format"); } } else if (fi.isSubface() && !_ptex->getFaceInfo(adjface).isSubface()) { /* subface -> nonsubface (0.5:1). two possible configuration case 1 case 2 +----------+----------+ +----------+----------+--------+ | face | B | | | face | B | +---edge---+----------+ +----------+--edge----+--------+ |0.0 0.5 1.0| |0.0 0.5 1.0| | adj face | | adj face | +---------------------+ +---------------------+ */ if (_ptex->meshType() == Ptex::mt_quad) { int Bf = fi.adjface((edge+1)%4); int Be = fi.adjedge((edge+1)%4); int f = _ptex->getFaceInfo(Bf).adjface((Be+1)%4); int e = _ptex->getFaceInfo(Bf).adjedge((Be+1)%4); if (f == adjface && e == ae) { // case 1 resampleBorder(adjface, ae, border, length, bpp, 0.0, 0.5); } else { // case 2 resampleBorder(adjface, ae, border, length, bpp, 0.5, 1.0); } } else { TF_WARN("Assuming quad mesh format"); } } else { /* ordinary case (1:1 match) +------------------+ | face | +--------edge------+ | adj face | +----------+-------+ */ resampleBorder(adjface, ae, border, length, bpp); } } else { /* border edge. duplicate itself +-----------------+ | face | +-------edge------+ */ resampleBorder(face, edge, border, length, bpp); flipBuffer(border, length, bpp); } } // get corner pixel by traversing all adjacent faces around vertex // bool GlfPtexMipmapTextureLoader::getCornerPixel(float *resultPixel, int numchannels, int face, int edge, int8_t reslog2) { const Ptex::FaceInfo &fi = _ptex->getFaceInfo(face); /* see http://ptex.us/adjdata.html Figure 2 for the reason of conditions edge==1 and 3 */ if (fi.isSubface() && edge == 3) { /* in T-vertex case, this function sets 'D' pixel value to *resultPixel and returns false gutter line | +------+-------+ | | | | D|C |<-- gutter line | *-------+ | B|A [2] | | |[3] [1]| | | [0] | +------+-------+ */ int adjface = fi.adjface(edge); if (adjface != -1 && !_ptex->getFaceInfo(adjface).isSubface()) { int adjedge = fi.adjedge(edge); Ptex::Res res(std::min((int)_blocks[adjface].ulog2, reslog2+1), std::min((int)_blocks[adjface].vlog2, reslog2+1)); int uv[2] = {0, 0}; if (adjedge == 0) { uv[0] = res.u()/2; uv[1] = 0; } else if (adjedge == 1) { uv[0] = res.u()-1; uv[1] = res.v()/2; } else if (adjedge == 2) { uv[0] = res.u()/2-1; uv[1] = res.v()-1; } else { uv[0] = 0; uv[1] = res.v()/2-1; } _ptex->getPixel(adjface, uv[0], uv[1], resultPixel, 0, numchannels, res); return true; } } if (fi.isSubface() && edge == 1) { /* gutter line | +------+-------+ | | [3] | | |[0] [2]| | B|A [1] | | *-------+ | D|C |<-- gutter line | | | +------+-------+ note: here we're focusing on vertex A which corresponds to the edge 1, but the edge 0 is an adjacent edge to get D pixel. */ int adjface = fi.adjface(0); if (adjface != -1 && !_ptex->getFaceInfo(adjface).isSubface()) { int adjedge = fi.adjedge(0); Ptex::Res res(std::min((int)_blocks[adjface].ulog2, reslog2+1), std::min((int)_blocks[adjface].vlog2, reslog2+1)); int uv[2] = {0, 0}; if (adjedge == 0) { uv[0] = res.u()/2-1; uv[1] = 0; } else if (adjedge == 1) { uv[0] = res.u()-1; uv[1] = res.v()/2-1; } else if (adjedge == 2) { uv[0] = res.u()/2; uv[1] = res.v()-1; } else { uv[0] = 0; uv[1] = res.v()/2; } _ptex->getPixel(adjface, uv[0], uv[1], resultPixel, 0, numchannels, res); return true; } } float *pixel = (float*)alloca(sizeof(float)*numchannels); float *accumPixel = (float*)alloca(sizeof(float)*numchannels); // clear accum pixel memset(accumPixel, 0, sizeof(float)*numchannels); // iterate faces around the vertex int numFaces = 0; CornerIterator it(_ptex, face, edge, reslog2); for (; !it.IsDone(); it.Next(), ++numFaces) { it.GetPixel(pixel); // accumulate pixel value for (int j = 0; j < numchannels; ++j) { accumPixel[j] += pixel[j]; if (numFaces == 2) { // also save the diagonal pixel for regular corner case resultPixel[j] = pixel[j]; } } } // if regular corner, returns diagonal pixel without averaging if (numFaces == 4 && (!it.IsBoundary())) { return true; } // non-4 valence. let's average and return false; for (int j = 0; j < numchannels; ++j) { resultPixel[j] = accumPixel[j]/numFaces; } return false; } int GlfPtexMipmapTextureLoader::getLevelDiff(int face, int edge) { // returns the highest mipmap level difference around the vertex // at face/edge Ptex::FaceInfo faceInfo = _ptex->getFaceInfo(face); // note: seamless interpolation only works for square tex faces. int8_t baseRes = _blocks[face].ulog2; if (faceInfo.isSubface()) ++baseRes; int maxDiff = 0; CornerIterator it(_ptex, face, edge, baseRes); for (; !it.IsDone(); it.Next()) { int res = _blocks[it.GetCurrentFace()].ulog2; if (it.IsSubface()) ++res; maxDiff = std::max(maxDiff, baseRes - res); } return maxDiff; } void GlfPtexMipmapTextureLoader::optimizePacking(int maxNumPages, size_t targetMemory) { size_t numTexels = 0; // prepare a list of pointers typedef std::vector BlockArray; typedef std::list BlockPtrList; BlockPtrList blocks; for (BlockArray::iterator it = _blocks.begin(); it != _blocks.end(); ++it) { blocks.push_back(&(*it)); numTexels += it->GetNumTexels(); } // try to fit into the target memory size if specified if (targetMemory != 0 && _bpp * numTexels > targetMemory) { size_t numTargetTexels = targetMemory / _bpp; // This is the list of blocks that can possibly be reduced in size to // save memory. BlockPtrList candidateBlocks; for (Block *block : blocks) { if (block->ulog2 < 2 || block->vlog2 < 2) { // these blocks can't be reduced in size, skip. } else { candidateBlocks.push_back(block); } } // sort blocks by area order candidateBlocks.sort(Block::sortByArea); while (numTexels > numTargetTexels && candidateBlocks.size() > 0) { // round robin the candidate blocks and move them to the closed // list if they can't be reduced further. Block *block = candidateBlocks.front(); candidateBlocks.pop_front(); if (block->ulog2 < 2 || block->vlog2 < 2) { // This block can't be reduced in size, move to closed list. // In this case since we are using borrowed pointers from the // 'blocks' master list we can just make sure it is removed // from the candidate list. continue; } else { // move it to the back of the list so we reduce other candidates // before coming back to this one. candidateBlocks.push_back(block); } // pick a smaller mipmap numTexels -= block->GetNumTexels(); block->SetSize((unsigned char)(block->ulog2-1), (unsigned char)(block->vlog2-1), _maxLevels != 0); numTexels += block->GetNumTexels(); } } // sort blocks by height-width order, possibly after reducing sizes // to fit in target memory. blocks.sort(Block::sort); size_t smallestBlockTexels = blocks.size() > 0 ? blocks.front()->GetNumTexels() : 0; uint16_t smallestBlockWidth = blocks.size() > 0 ? blocks.front()->width : 0; uint16_t smallestBlockHeight = blocks.size() > 0 ? blocks.front()->width : 0; for (BlockPtrList::iterator it = blocks.begin(); it != blocks.end(); ++it) { smallestBlockTexels = std::min(smallestBlockTexels, (size_t)(*it)->GetNumTexels()); smallestBlockWidth = std::min(smallestBlockWidth, (*it)->width); smallestBlockHeight = std::min(smallestBlockHeight, (*it)->height); } // compute page size --------------------------------------------- { // page size is set to the largest edge of the largest block : // this is the smallest possible page size, which should minimize // the texels wasted on the "last page" when the smallest blocks are // being packed. int w = 0, h = 0; for (BlockPtrList::iterator it = blocks.begin(); it != blocks.end(); ++it) { w = std::max(w, (int)(*it)->width); h = std::max(h, (int)(*it)->height); } // grow the pagesize to make sure the optimization will not exceed // the maximum number of pages allowed int minPageSize = 512; int maxPageSize = 4096; // XXX:should be configurable. // use minPageSize if too small if (w < minPageSize) { w = minPageSize; } if (h < minPageSize) { h = minPageSize; } // rough estimate of num pages int estimatedNumPages = (int)numTexels/w/h; // if expecting too many pages, increase page size int pageLimit = std::max(1, maxNumPages/2); if (estimatedNumPages > pageLimit) { w = std::min(w*(estimatedNumPages/pageLimit), maxPageSize); estimatedNumPages = (int)numTexels/w/h; } if (estimatedNumPages > pageLimit) { h = std::min(h*(estimatedNumPages/pageLimit), maxPageSize); } _pageWidth = w; _pageHeight = h; } // pack blocks into slots ---------------------------------------- Page::SlotLimit limit(smallestBlockTexels, smallestBlockWidth, smallestBlockHeight); // Use a list of working pages while we pack. Move them off the working // set when they are filled. std::list openPages; for (BlockPtrList::iterator it = blocks.begin(); it != blocks.end(); ++it) { Block *block = *it; // traverse existing pages for a suitable slot --------------- bool added = false; for (std::list::iterator pageIt = openPages.begin(); pageIt != openPages.end(); ++pageIt) { Page *page = *pageIt; if ((added = page->AddBlock(block, limit)) == true) { // check if full, then move page to closed list. openPages.erase(pageIt); if (page->IsFull()) { _pages.push_back(page); } else { // not full yet but likely much more full than the next page // in line so move it to the back openPages.push_back(page); } break; } } // if no page was found : start new page if (!added) { Page *page = new Page(_pageWidth, _pageHeight); added = page->AddBlock(block, limit); // check if full, then move page to closed list. if (page->IsFull()) { _pages.push_back(page); } else { openPages.push_back(page); } // XXX -- Should not use assert(). assert(added); } } // move the remaining open pages to the closed list as we have no more // blocks to pack. _pages.insert(_pages.end(), openPages.begin(), openPages.end()); // set corner pixel mipmap factors for (BlockArray::iterator it = _blocks.begin(); it != _blocks.end(); ++it) { int face = it->index; uint16_t adjSizeDiffs = 0; for (int edge = 0; edge < 4; ++edge) { int levelDiff = getLevelDiff(face, edge); adjSizeDiffs <<= 4; adjSizeDiffs |= (uint16_t)levelDiff; } it->adjSizeDiffs = adjSizeDiffs; // printf("Block %d, %08x\n", it->index, adjSizeDiffs); } #if 0 for (size_t i = 0; i < _pages.size(); ++i) { printf("Page %ld : \n", i); _pages[i]->Dump(); } #endif } void GlfPtexMipmapTextureLoader::generateBuffers() { // ptex layout struct // struct Layout { // uint16_t page; // uint16_t nMipmap; // uint16_t u; // uint16_t v; // uint16_t adjSizeDiffs; //(4:4:4:4) // uint8_t width log2; // uint8_t height log2; // }; int numFaces = (int)_blocks.size(); int numPages = (int)_pages.size(); // populate the texels int pageStride = _bpp * _pageWidth * _pageHeight; _texelBuffer = new unsigned char[pageStride * numPages]; _memoryUsage = pageStride * numPages; memset(_texelBuffer, 0, pageStride * numPages); for (int i = 0; i < numPages; ++i) { _pages[i]->Generate(this, _ptex, _texelBuffer + pageStride * i, _bpp, _pageWidth, _maxLevels); } // populate the layout texture buffer _layoutBuffer = new unsigned char[numFaces * sizeof(uint16_t) * 6]; _memoryUsage += numFaces * sizeof(uint16_t) * 6; for (int i = 0; i < numPages; ++i) { Page *page = _pages[i]; for (Page::BlockList::const_iterator it = page->GetBlocks().begin(); it != page->GetBlocks().end(); ++it) { int ptexIndex = (*it)->index; uint16_t *p = (uint16_t*)(_layoutBuffer + sizeof(uint16_t)*6*ptexIndex); *p++ = (uint16_t)i; // page *p++ = (uint16_t)((*it)->nMipmaps-1); *p++ = (uint16_t)((*it)->u+1); *p++ = (uint16_t)((*it)->v+1); *p++ = (*it)->adjSizeDiffs; *p++ = (uint16_t)(((*it)->ulog2 << 8) | (*it)->vlog2); } } #if 0 // debug FILE *fp = ArchOpenFile("out.ppm", "w"); fprintf(fp, "P3\n"); fprintf(fp, "%d %d\n", _pageWidth, _pageHeight * numPages); fprintf(fp, "255\n"); unsigned char *p = _texelBuffer; for (int i = 0; i < numPages; ++i) { for (int y = 0; y < _pageHeight; ++y) { for (int x = 0; x < _pageWidth; ++x) { fprintf(fp, "%d %d %d ", (int)p[0], (int)p[1], (int)p[2]); p += _bpp; } fprintf(fp, "\n"); } } fclose(fp); #endif } PXR_NAMESPACE_CLOSE_SCOPE