# Copyright 2022 The Chromium Authors # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import("//build/config/clang/clang.gni") import("//build/config/compiler/compiler.gni") import("//build/config/rust.gni") import("//build/config/sanitizers/sanitizers.gni") import("//build/config/win/visual_studio_version.gni") import("//build/toolchain/cc_wrapper.gni") import("//build/toolchain/rbe.gni") import("//build/toolchain/toolchain.gni") import("//build/toolchain/win/win_toolchain_data.gni") assert(is_win, "Should only be running on Windows") # This tool will is used as a wrapper for various commands below. _tool_wrapper_path = rebase_path("//build/toolchain/win/tool_wrapper.py", root_build_dir) if (host_os == "win") { _exe = ".exe" } else { _exe = "" } _clang_bin_path = rebase_path("$clang_base_path/bin", root_build_dir) # Makes a single MSVC toolchain. # # Parameters: # environment: File name of environment file. # # You would also define a toolchain_args variable with at least these set: # current_cpu: current_cpu to pass as a build arg # current_os: current_os to pass as a build arg template("msvc_toolchain") { toolchain(target_name) { # When invoking this toolchain not as the default one, these args will be # passed to the build. They are ignored when this is the default toolchain. assert(defined(invoker.toolchain_args)) toolchain_args = { forward_variables_from(invoker.toolchain_args, "*") # This value needs to be passed through unchanged. host_toolchain = host_toolchain } if (defined(toolchain_args.is_clang)) { toolchain_is_clang = toolchain_args.is_clang } else { toolchain_is_clang = is_clang } # When the invoker has explicitly overridden use_reclient or cc_wrapper in # the toolchain args, use those values, otherwise default to the global one. # This works because the only reasonable override that toolchains might # supply for these values are to force-disable them. if (defined(toolchain_args.use_reclient)) { toolchain_uses_reclient = toolchain_args.use_reclient } else { toolchain_uses_reclient = use_reclient } if (defined(toolchain_args.cc_wrapper)) { toolchain_cc_wrapper = toolchain_args.cc_wrapper } else { toolchain_cc_wrapper = cc_wrapper } assert(!(toolchain_cc_wrapper != "" && toolchain_uses_reclient), "re-client and cc_wrapper can't be used together.") if (toolchain_uses_reclient) { if (toolchain_is_clang) { cl_prefix = "${reclient_bin_dir}/rewrapper -cfg=${reclient_cc_cfg_file}${rbe_bug_326584510_missing_inputs} -exec_root=${rbe_exec_root} -labels=type=compile,compiler=clang-cl,lang=cpp " } else { cl_prefix = "" } } else if (toolchain_cc_wrapper != "" && toolchain_is_clang) { cl_prefix = toolchain_cc_wrapper + " " } else { cl_prefix = "" } cl = "${cl_prefix}${invoker.cl}" if (host_os == "win") { # Flip the slashes so that copy/paste of the command works. cl = string_replace(cl, "/", "\\") } # Make these apply to all tools below. lib_switch = "" lib_dir_switch = "/LIBPATH:" # Object files go in this directory. object_subdir = "{{target_out_dir}}/{{label_name}}" env = invoker.environment if (use_lld) { # lld-link includes a replacement for lib.exe that can produce thin # archives and understands bitcode (for lto builds). link = "${_clang_bin_path}/lld-link${_exe}" cc_linkflags = "" if (toolchain_has_rust) { rust_linkflags = "" } if (host_os == "win") { # Flip the slashes so that copy/paste of the commands works. link = string_replace(link, "/", "\\") } lib = "$link /lib" if (host_os != "win") { # See comment adding --rsp-quoting to $cl above for more information. cc_linkflags += " --rsp-quoting=posix" if (toolchain_has_rust) { rust_linkflags += " -Clink-arg=--rsp-quoting=posix" } } } else { lib = "lib.exe" link = "link.exe" cc_linkflags = "" if (toolchain_has_rust) { rust_linkflags = "" } } # If possible, pass system includes as flags to the compiler. When that's # not possible, load a full environment file (containing %INCLUDE% and # %PATH%) -- e.g. 32-bit MSVS builds require %PATH% to be set and just # passing in a list of include directories isn't enough. if (defined(invoker.sys_include_flags)) { env_wrapper = "" sys_include_flags = "${invoker.sys_include_flags} " # Note trailing space. } else { # clang-cl doesn't need this env hoop, so omit it there. assert(!toolchain_is_clang) env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space. sys_include_flags = "" } if (host_os != "win" || (use_lld && defined(invoker.sys_lib_flags))) { linker_wrapper = "" sys_lib_flags = "${invoker.sys_lib_flags}" # TODO(thakis): Remove once crbug.com/1300005 is fixed assert(toolchain_args.current_cpu == "x64" || toolchain_args.current_cpu == "x86" || toolchain_args.current_cpu == "arm" || toolchain_args.current_cpu == "arm64", "Only supports x64, x86, arm and arm64 CPUs") if (toolchain_args.current_cpu == "x64") { sys_lib_flags += " /MACHINE:X64" } else if (toolchain_args.current_cpu == "x86") { sys_lib_flags += " /MACHINE:X86" } else if (toolchain_args.current_cpu == "arm") { sys_lib_flags += " /MACHINE:ARM" } else if (toolchain_args.current_cpu == "arm64") { sys_lib_flags += " /MACHINE:ARM64" } sys_lib_flags += " " # Note trailing space. } else { # link.exe must be run under a wrapper to set up the environment # (it needs %LIB% set to find libraries), and to work around its bugs. # Note trailing space: linker_wrapper = "\"$python_path\" $_tool_wrapper_path link-wrapper $env False " sys_lib_flags = "" } if (defined(toolchain_args.use_clang_coverage)) { toolchain_use_clang_coverage = toolchain_args.use_clang_coverage } else { toolchain_use_clang_coverage = use_clang_coverage } if (toolchain_use_clang_coverage) { assert(toolchain_is_clang, "use_clang_coverage should only be used with Clang") if (defined(toolchain_args.coverage_instrumentation_input_file)) { toolchain_coverage_instrumentation_input_file = toolchain_args.coverage_instrumentation_input_file } else { toolchain_coverage_instrumentation_input_file = coverage_instrumentation_input_file } coverage_wrapper = rebase_path("//build/toolchain/clang_code_coverage_wrapper.py", root_build_dir) coverage_wrapper = coverage_wrapper + " --target-os=" + target_os if (toolchain_coverage_instrumentation_input_file != "") { coverage_wrapper = coverage_wrapper + " --files-to-instrument=" + rebase_path(toolchain_coverage_instrumentation_input_file, root_build_dir) } coverage_wrapper = "\"$python_path\" " + coverage_wrapper + " " } else { coverage_wrapper = "" } # Disabled with cc_wrapper because of # https://github.com/mozilla/sccache/issues/1013 if (toolchain_is_clang && toolchain_cc_wrapper == "") { # This flag omits system includes from /showIncludes output, to reduce # the amount of data to parse and store in .ninja_deps. We do this on # non-Windows too, and already make sure rebuilds after winsdk/libc++/ # clang header updates happen via changing command line flags. show_includes = "/showIncludes:user" } else { show_includes = "/showIncludes" } tool("cc") { precompiled_header_type = "msvc" pdbname = "{{target_out_dir}}/{{label_name}}_c.pdb" # Label names may have spaces in them so the pdbname must be quoted. The # source and output don't need to be quoted because GN knows they're a # full file name and will quote automatically when necessary. depsformat = "msvc" description = "CC {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj" ] # Note that the code coverage wrapper scripts assumes that {{source}} # comes immediately after /c. command = "$coverage_wrapper$env_wrapper$cl /c {{source}} /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} /Fo{{output}} /Fd\"$pdbname\"" } tool("cxx") { precompiled_header_type = "msvc" # The PDB name needs to be different between C and C++ compiled files. pdbname = "{{target_out_dir}}/{{label_name}}_cc.pdb" # See comment in CC tool about quoting. depsformat = "msvc" description = "CXX {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj" ] # Note that the code coverage wrapper scripts assumes that {{source}} # comes immediately after /c. command = "$coverage_wrapper$env_wrapper$cl /c {{source}} /Fo{{output}} /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} /Fd\"$pdbname\"" } tool("rc") { command = "\"$python_path\" $_tool_wrapper_path rc-wrapper $env rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}" depsformat = "msvc" outputs = [ "$object_subdir/{{source_name_part}}.res" ] description = "RC {{output}}" } tool("asm") { is_msvc_assembler = true if (toolchain_args.current_cpu == "arm64") { if (toolchain_is_clang) { ml = "${cl_prefix}${_clang_bin_path}/clang-cl${_exe} --target=aarch64-pc-windows" if (host_os == "win") { # Flip the slashes so that copy/paste of the command works. ml = string_replace(ml, "/", "\\") } ml += " -c -o{{output}}" is_msvc_assembler = false } else { # Only affects Arm builds with is_clang = false, implemented for # building V8 for Windows on Arm systems with the MSVC toolchain. ml = "armasm64.exe" } } else { if (toolchain_is_clang && !disable_llvm_ml) { prefix = rebase_path("$clang_base_path/bin", root_build_dir) ml = "$prefix/llvm-ml${_exe}" if (toolchain_args.current_cpu == "x64") { ml += " -m64" } else { ml += " -m32" } } else { if (toolchain_args.current_cpu == "x64") { ml = "ml64.exe" } else { ml = "ml.exe" } } } if (is_msvc_assembler) { ml += " /nologo /Fo{{output}}" # Suppress final-stage linking on x64/x86 builds. (Armasm64 does not # require /c because it doesn't support linking.) if (toolchain_args.current_cpu != "arm64") { ml += " /c" } if (use_lld && (!toolchain_is_clang || disable_llvm_ml)) { # Wrap ml(64).exe with a script that makes its output deterministic. # It's lld only because the script zaps obj Timestamp which # link.exe /incremental looks at. ml_py = rebase_path("//build/toolchain/win/ml.py", root_build_dir) ml = "\"$python_path\" $ml_py $ml" } if (toolchain_args.current_cpu == "arm64") { # armasm64.exe does not support definitions passed via the command # line. (Fortunately, they're not needed for compiling the V8 # snapshot, which is the only time this assembler is required.) command = "\"$python_path\" $_tool_wrapper_path asm-wrapper $env $ml {{include_dirs}} {{asmflags}} {{source}}" } else { command = "\"$python_path\" $_tool_wrapper_path asm-wrapper $env $ml {{defines}} {{include_dirs}} {{asmflags}} {{source}}" } } else { command = "$ml {{defines}} {{include_dirs}} {{asmflags}} {{source}}" } description = "ASM {{output}}" outputs = [ "$object_subdir/{{source_name_part}}.obj" ] } if (toolchain_has_rust) { rust_sysroot_relative = rebase_path(rust_sysroot, root_build_dir) rustc = "$rust_sysroot_relative/bin/rustc" rustc_wrapper = rebase_path("//build/rust/rustc_wrapper.py", root_build_dir) rustc_windows_args = " -Clinker=$link$rust_linkflags $rustc_common_args" tool("rust_staticlib") { libname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" rspfile = "$libname.rsp" depfile = "$libname.d" default_output_extension = ".lib" output_prefix = "lib" # Static libraries go in the target out directory by default so we can # generate different targets with the same name and not have them # collide. default_output_dir = "{{target_out_dir}}" description = "RUST(STATICLIB) {{output}}" outputs = [ libname ] rspfile_content = "{{rustdeps}} {{externs}} SOURCES {{sources}}" command = "\"$python_path\" \"$rustc_wrapper\" --target-windows --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- $rustc_windows_args --emit=dep-info=$depfile,link -o $libname LDFLAGS RUSTENV {{rustenv}}" rust_sysroot = rust_sysroot_relative } tool("rust_rlib") { # We must always prefix with `lib` even if the library already starts # with that prefix or else our stdlib is unable to find libc.rlib (or # actually liblibc.rlib). rlibname = "{{output_dir}}/lib{{target_output_name}}{{output_extension}}" rspfile = "$rlibname.rsp" depfile = "$rlibname.d" default_output_extension = ".rlib" # This is prefixed unconditionally in `rlibname`. # output_prefix = "lib" # Static libraries go in the target out directory by default so we can # generate different targets with the same name and not have them # collide. default_output_dir = "{{target_out_dir}}" description = "RUST {{output}}" outputs = [ rlibname ] rspfile_content = "{{rustdeps}} {{externs}} SOURCES {{sources}}" command = "\"$python_path\" \"$rustc_wrapper\" --target-windows --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- $rustc_windows_args --emit=dep-info=$depfile,link -o $rlibname {{rustdeps}} {{externs}} LDFLAGS RUSTENV {{rustenv}}" rust_sysroot = rust_sysroot_relative } tool("rust_bin") { exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "$exename.pdb" rspfile = "$exename.rsp" depfile = "$exename.d" pool = "//build/toolchain:link_pool($default_toolchain)" default_output_extension = ".exe" default_output_dir = "{{root_out_dir}}" description = "RUST(BIN) {{output}}" outputs = [ # The first entry here is used for dependency tracking. exename, pdbname, ] runtime_outputs = outputs rspfile_content = "{{rustdeps}} {{externs}} SOURCES {{sources}}" dynamic_link_switch = "" command = "\"$python_path\" \"$rustc_wrapper\" --target-windows --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- $rustc_windows_args --emit=dep-info=$depfile,link -o $exename LDFLAGS {{ldflags}} $sys_lib_flags /PDB:$pdbname RUSTENV {{rustenv}}" rust_sysroot = rust_sysroot_relative } tool("rust_cdylib") { # E.g. "foo.dll": dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" libname = "$dllname.lib" # e.g. foo.dll.lib pdbname = "$dllname.pdb" rspfile = "$dllname.rsp" depfile = "$dllname.d" pool = "//build/toolchain:link_pool($default_toolchain)" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "RUST(CDYLIB) {{output}}" outputs = [ # The first entry here is used for dependency tracking. Dylibs are # linked into other targets and that linking must be done through # the .lib file, not the .dll file. So the .lib file is the primary # output here. libname, dllname, pdbname, ] runtime_outputs = [ dllname, pdbname, ] rspfile_content = "{{rustdeps}} {{externs}} SOURCES {{sources}}" dynamic_link_switch = "" command = "\"$python_path\" \"$rustc_wrapper\" --target-windows --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- $rustc_windows_args --emit=dep-info=$depfile,link -o $dllname LDFLAGS {{ldflags}} $sys_lib_flags /PDB:$pdbname /IMPLIB:$libname RUSTENV {{rustenv}}" rust_sysroot = rust_sysroot_relative # Since the above commands only updates the .lib file when it changes, # ask Ninja to check if the timestamp actually changed to know if # downstream dependencies should be recompiled. restat = true } tool("rust_macro") { # E.g. "foo.dll": dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "$dllname.pdb" rspfile = "$dllname.rsp" depfile = "$dllname.d" pool = "//build/toolchain:link_pool($default_toolchain)" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "RUST(MACRO) {{output}}" outputs = [ # The first entry here is used for dependency tracking. Proc macros # are consumed as dlls directly, loaded a runtime, so the dll is the # primary output here. If we make a .lib file the primary output, we # end up trying to load the .lib file as a procmacro which fails. # # Since depending on a macro target for linking would fail (it would # try to link primary .dll target) we omit the .lib here entirely. dllname, pdbname, ] runtime_outputs = outputs rspfile_content = "{{rustdeps}} {{externs}} SOURCES {{sources}}" dynamic_link_switch = "" command = "\"$python_path\" \"$rustc_wrapper\" --target-windows --rustc=$rustc --depfile=$depfile --rsp=$rspfile -- $rustc_windows_args --emit=dep-info=$depfile,link -o $dllname LDFLAGS {{ldflags}} $sys_lib_flags /PDB:$pdbname RUSTENV {{rustenv}}" rust_sysroot = rust_sysroot_relative # Since the above commands only updates the .lib file when it changes, # ask Ninja to check if the timestamp actually changed to know if # downstream dependencies should be recompiled. restat = true } } tool("alink") { rspfile = "{{output}}.rsp" command = "$linker_wrapper$lib \"/OUT:{{output}}\" /nologo {{arflags}} \"@$rspfile\"" description = "LIB {{output}}" outputs = [ # Ignore {{output_extension}} and always use .lib, there's no reason to # allow targets to override this extension on Windows. "{{output_dir}}/{{target_output_name}}.lib", ] default_output_extension = ".lib" default_output_dir = "{{target_out_dir}}" # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{inputs_newline}}" } tool("solink") { # E.g. "foo.dll": dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" libname = "${dllname}.lib" # e.g. foo.dll.lib pdbname = "${dllname}.pdb" rspfile = "${dllname}.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link$cc_linkflags \"/OUT:$dllname\" /nologo ${sys_lib_flags} \"/IMPLIB:$libname\" /DLL \"/PDB:$pdbname\" \"@$rspfile\"" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "LINK(DLL) {{output}}" outputs = [ dllname, libname, pdbname, ] link_output = libname depend_output = libname runtime_outputs = [ dllname, pdbname, ] # Since the above commands only updates the .lib file when it changes, # ask Ninja to check if the timestamp actually changed to know if # downstream dependencies should be recompiled. restat = true # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}} {{rlibs}}" } tool("solink_module") { # E.g. "foo.dll": dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "${dllname}.pdb" rspfile = "${dllname}.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link$cc_linkflags \"/OUT:$dllname\" /nologo ${sys_lib_flags} /DLL \"/PDB:$pdbname\" \"@$rspfile\"" default_output_extension = ".dll" default_output_dir = "{{root_out_dir}}" description = "LINK_MODULE(DLL) {{output}}" outputs = [ dllname, pdbname, ] runtime_outputs = outputs # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}} {{rlibs}}" } tool("link") { exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}" pdbname = "$exename.pdb" rspfile = "$exename.rsp" pool = "//build/toolchain:link_pool($default_toolchain)" command = "$linker_wrapper$link$cc_linkflags \"/OUT:$exename\" /nologo ${sys_lib_flags} \"/PDB:$pdbname\" \"@$rspfile\"" default_output_extension = ".exe" default_output_dir = "{{root_out_dir}}" description = "LINK {{output}}" outputs = [ exename, pdbname, ] runtime_outputs = outputs # The use of inputs_newline is to work around a fixed per-line buffer # size in the linker. rspfile_content = "{{inputs_newline}} {{libs}} {{solibs}} {{ldflags}} {{rlibs}}" } # These two are really entirely generic, but have to be repeated in # each toolchain because GN doesn't allow a template to be used here. # See //build/toolchain/toolchain.gni for details. tool("stamp") { command = stamp_command description = stamp_description pool = "//build/toolchain:action_pool($default_toolchain)" } tool("copy") { command = copy_command description = copy_description pool = "//build/toolchain:action_pool($default_toolchain)" } tool("action") { pool = "//build/toolchain:action_pool($default_toolchain)" } } } # Make an additional toolchain which is used for making tools that are run # on the host machine as part of the build process (such as proc macros # and Cargo build scripts). This toolchain uses the prebuilt stdlib that # comes with the compiler, so it doesn't have to wait for the stdlib to be # built before building other stuff. And this ensures its proc macro # outputs have the right ABI to be loaded by the compiler, and it can be # used to compile build scripts that are part of the stdlib that is built # for the default toolchain. template("msvc_rust_host_build_tools_toolchain") { msvc_toolchain(target_name) { assert(defined(invoker.toolchain_args)) forward_variables_from(invoker, "*", [ "toolchain_args", "visibility", "testonly", ]) toolchain_args = { # Populate toolchain args from the invoker. forward_variables_from(invoker.toolchain_args, "*") toolchain_for_rust_host_build_tools = true # The host build tools are static release builds to make the Chromium # build faster. They do not need PGO etc, so no official builds. is_debug = false is_component_build = false is_official_build = false use_clang_coverage = false use_sanitizer_coverage = false generate_linker_map = false use_thin_lto = false } } } # If PartitionAlloc is part of the build (even as a transitive dependency), then # it replaces the system allocator. If this toolchain is used, that will be # overridden and the system allocator will be used regardless. This is important # in some third-party binaries outside of Chrome. template("msvc_system_allocator_toolchain") { msvc_toolchain(target_name) { assert(defined(invoker.toolchain_args)) forward_variables_from(invoker, "*", [ "toolchain_args", "visibility", "testonly", ]) toolchain_args = { # Populate toolchain args from the invoker. forward_variables_from(invoker.toolchain_args, "*") toolchain_allows_use_partition_alloc_as_malloc = false # Disable component build so that we can copy the exes to the # root_build_dir and support the default_toolchain redirection on Windows. # See also the comment in //build/symlink.gni. is_component_build = false # Only one toolchain can be configured with MSAN support with our current # GN setup, or they all try to make the instrumented libraries and # collide. is_msan = false } } } template("win_toolchains") { # On Windows, cross-compile for x86 changes the `host_toolchain` # into x86 too so as to avoid compiling things twice (see # //build/config/BUILDCONFIG.gn). But the prebuilt stdlib does not # exist for Windows x86 and it's exceedingly difficult to get it # built from a single build_rust.py invocation. So we just don't follow # along in the `build_tools_toolchain` toolchains, and always use the host # cpu type (which will be x64 in that case). Things built with these # toolchains are never built for the target_cpu anyhow, so the optimization # there does not benefit them. # # Thus, in build_tools_toolchain, for the host machine: # * Use `rust_host_toolchain_arch` instead of `toolchain_arch`. # * Use `rust_host_win_toolchain_data` instead of `win_toolchain_data`. assert(defined(invoker.toolchain_arch)) toolchain_arch = invoker.toolchain_arch rust_host_toolchain_arch = host_cpu # The toolchain data for `msvc_toolchain()`. if (toolchain_arch == "x86") { win_toolchain_data = win_toolchain_data_x86 } else if (toolchain_arch == "x64") { win_toolchain_data = win_toolchain_data_x64 } else if (toolchain_arch == "arm64") { win_toolchain_data = win_toolchain_data_arm64 } else { error("Unsupported toolchain_arch, add it to win_toolchain_data.gni") } # The toolchain data for `build_tools_toolchain` for the host machine. if (rust_host_toolchain_arch == "x86") { rust_host_win_toolchain_data = win_toolchain_data_x86 } else if (rust_host_toolchain_arch == "x64") { rust_host_win_toolchain_data = win_toolchain_data_x64 } else if (rust_host_toolchain_arch == "arm64") { rust_host_win_toolchain_data = win_toolchain_data_arm64 } else { error( "Unsupported rust_host_toolchain_arch, add it to win_toolchain_data.gni") } # The toolchain using MSVC only makes sense when not doing cross builds. # Chromium exclusively uses the win_clang_ toolchain below, but V8 and # WebRTC still use this MSVC toolchain in some cases. if (host_os == "win") { if (defined(invoker.cl_toolchain_prefix)) { cl_toolchain_prefix = invoker.cl_toolchain_prefix } else { cl_toolchain_prefix = "" } msvc_toolchain(cl_toolchain_prefix + target_name) { environment = "environment." + toolchain_arch cl = "\"${win_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = false use_clang_coverage = false current_os = "win" current_cpu = toolchain_arch } } msvc_system_allocator_toolchain( cl_toolchain_prefix + target_name + "_host_with_system_allocator") { environment = "environment." + rust_host_toolchain_arch cl = "\"${rust_host_win_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = false use_clang_coverage = false current_os = "win" current_cpu = rust_host_toolchain_arch } } msvc_system_allocator_toolchain( cl_toolchain_prefix + target_name + "_with_system_allocator") { environment = "environment." + toolchain_arch cl = "\"${win_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = false use_clang_coverage = false current_os = "win" current_cpu = toolchain_arch } } msvc_rust_host_build_tools_toolchain( cl_toolchain_prefix + target_name + "_for_rust_host_build_tools") { environment = "environment." + rust_host_toolchain_arch cl = "\"${rust_host_win_toolchain_data.vc_bin_dir}/cl.exe\"" toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = false use_clang_coverage = false current_os = "win" current_cpu = rust_host_toolchain_arch } } } if (defined(invoker.clang_toolchain_prefix)) { clang_toolchain_prefix = invoker.clang_toolchain_prefix } else { clang_toolchain_prefix = "win_clang_" } _clang_lib_dir = rebase_path("$clang_base_path/lib/clang/$clang_version/lib/windows", root_build_dir) if (host_os == "win") { # And to match the other -libpath flags. _clang_lib_dir = string_replace(_clang_lib_dir, "/", "\\") } msvc_toolchain(clang_toolchain_prefix + target_name) { environment = "environment." + toolchain_arch cl = "${_clang_bin_path}/clang-cl${_exe}" sys_include_flags = "${win_toolchain_data.include_flags_imsvc}" if (use_lld) { sys_lib_flags = "-libpath:$_clang_lib_dir " + "${win_toolchain_data.libpath_lldlink_flags}" } toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = true current_os = "win" current_cpu = toolchain_arch } } msvc_system_allocator_toolchain( clang_toolchain_prefix + target_name + "_host_with_system_allocator") { environment = "environment." + rust_host_toolchain_arch cl = "${_clang_bin_path}/clang-cl${_exe}" sys_include_flags = "${rust_host_win_toolchain_data.include_flags_imsvc}" if (use_lld) { sys_lib_flags = "-libpath:$_clang_lib_dir " + "${rust_host_win_toolchain_data.libpath_lldlink_flags}" } toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = true current_os = "win" current_cpu = rust_host_toolchain_arch } } msvc_system_allocator_toolchain( clang_toolchain_prefix + target_name + "_with_system_allocator") { environment = "environment." + toolchain_arch cl = "${_clang_bin_path}/clang-cl${_exe}" sys_include_flags = "${win_toolchain_data.include_flags_imsvc}" if (use_lld) { sys_lib_flags = "-libpath:$_clang_lib_dir " + "${win_toolchain_data.libpath_lldlink_flags}" } toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = true current_os = "win" current_cpu = toolchain_arch } } msvc_rust_host_build_tools_toolchain( clang_toolchain_prefix + target_name + "_for_rust_host_build_tools") { environment = "environment." + rust_host_toolchain_arch cl = "${_clang_bin_path}/clang-cl${_exe}" sys_include_flags = "${rust_host_win_toolchain_data.include_flags_imsvc}" if (use_lld) { sys_lib_flags = "-libpath:$_clang_lib_dir " + "${rust_host_win_toolchain_data.libpath_lldlink_flags}" } toolchain_args = { if (defined(invoker.toolchain_args)) { forward_variables_from(invoker.toolchain_args, "*") } is_clang = true current_os = "win" current_cpu = rust_host_toolchain_arch } } }