# Copyright 2013 The Chromium Authors # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re import sys import json import logging import math from lib.common import perf_result_data_type # Mapping from result type to test output RESULT_TYPES = {perf_result_data_type.UNIMPORTANT: 'RESULT ', perf_result_data_type.DEFAULT: '*RESULT ', perf_result_data_type.INFORMATIONAL: '', perf_result_data_type.UNIMPORTANT_HISTOGRAM: 'HISTOGRAM ', perf_result_data_type.HISTOGRAM: '*HISTOGRAM '} def _EscapePerfResult(s): """Escapes |s| for use in a perf result.""" return re.sub('[\:|=/#&,]', '_', s) def FlattenList(values): """Returns a simple list without sub-lists.""" ret = [] for entry in values: if isinstance(entry, list): ret.extend(FlattenList(entry)) else: ret.append(entry) return ret def GeomMeanAndStdDevFromHistogram(histogram_json): histogram = json.loads(histogram_json) # Handle empty histograms gracefully. if not 'buckets' in histogram: return 0.0, 0.0 count = 0 sum_of_logs = 0 for bucket in histogram['buckets']: if 'high' in bucket: bucket['mean'] = (bucket['low'] + bucket['high']) / 2.0 else: bucket['mean'] = bucket['low'] if bucket['mean'] > 0: sum_of_logs += math.log(bucket['mean']) * bucket['count'] count += bucket['count'] if count == 0: return 0.0, 0.0 sum_of_squares = 0 geom_mean = math.exp(sum_of_logs / count) for bucket in histogram['buckets']: if bucket['mean'] > 0: sum_of_squares += (bucket['mean'] - geom_mean) ** 2 * bucket['count'] return geom_mean, math.sqrt(sum_of_squares / count) def _ValueToString(v): # Special case for floats so we don't print using scientific notation. if isinstance(v, float): return '%f' % v else: return str(v) def _MeanAndStdDevFromList(values): avg = None sd = None if len(values) > 1: try: value = '[%s]' % ','.join([_ValueToString(v) for v in values]) avg = sum([float(v) for v in values]) / len(values) sqdiffs = [(float(v) - avg) ** 2 for v in values] variance = sum(sqdiffs) / (len(values) - 1) sd = math.sqrt(variance) except ValueError: value = ', '.join(values) else: value = values[0] return value, avg, sd def PrintPages(page_list): """Prints list of pages to stdout in the format required by perf tests.""" print('Pages: [%s]' % ','.join([_EscapePerfResult(p) for p in page_list])) def PrintPerfResult(measurement, trace, values, units, result_type=perf_result_data_type.DEFAULT, print_to_stdout=True): """Prints numerical data to stdout in the format required by perf tests. The string args may be empty but they must not contain any colons (:) or equals signs (=). This is parsed by the buildbot using: http://src.chromium.org/viewvc/chrome/trunk/tools/build/scripts/slave/process_log_utils.py Args: measurement: A description of the quantity being measured, e.g. "vm_peak". On the dashboard, this maps to a particular graph. Mandatory. trace: A description of the particular data point, e.g. "reference". On the dashboard, this maps to a particular "line" in the graph. Mandatory. values: A list of numeric measured values. An N-dimensional list will be flattened and treated as a simple list. units: A description of the units of measure, e.g. "bytes". result_type: Accepts values of perf_result_data_type.ALL_TYPES. print_to_stdout: If True, prints the output in stdout instead of returning the output to caller. Returns: String of the formated perf result. """ assert perf_result_data_type.IsValidType(result_type), \ 'result type: %s is invalid' % result_type trace_name = _EscapePerfResult(trace) if (result_type == perf_result_data_type.UNIMPORTANT or result_type == perf_result_data_type.DEFAULT or result_type == perf_result_data_type.INFORMATIONAL): assert isinstance(values, list) assert '/' not in measurement flattened_values = FlattenList(values) assert len(flattened_values) value, avg, sd = _MeanAndStdDevFromList(flattened_values) output = '%s%s: %s%s%s %s' % ( RESULT_TYPES[result_type], _EscapePerfResult(measurement), trace_name, # Do not show equal sign if the trace is empty. Usually it happens when # measurement is enough clear to describe the result. '= ' if trace_name else '', value, units) else: assert perf_result_data_type.IsHistogram(result_type) assert isinstance(values, list) # The histograms can only be printed individually, there's no computation # across different histograms. assert len(values) == 1 value = values[0] output = '%s%s: %s= %s %s' % ( RESULT_TYPES[result_type], _EscapePerfResult(measurement), trace_name, value, units) avg, sd = GeomMeanAndStdDevFromHistogram(value) if avg: output += '\nAvg %s: %f%s' % (measurement, avg, units) if sd: output += '\nSd %s: %f%s' % (measurement, sd, units) if print_to_stdout: print(output) sys.stdout.flush() return output def ReportPerfResult(chart_data, graph_title, trace_title, value, units, improvement_direction='down', important=True): """Outputs test results in correct format. If chart_data is None, it outputs data in old format. If chart_data is a dictionary, formats in chartjson format. If any other format defaults to old format. Args: chart_data: A dictionary corresponding to perf results in the chartjson format. graph_title: A string containing the name of the chart to add the result to. trace_title: A string containing the name of the trace within the chart to add the result to. value: The value of the result being reported. units: The units of the value being reported. improvement_direction: A string denoting whether higher or lower is better for the result. Either 'up' or 'down'. important: A boolean denoting whether the result is important or not. """ if chart_data and isinstance(chart_data, dict): chart_data['charts'].setdefault(graph_title, {}) chart_data['charts'][graph_title][trace_title] = { 'type': 'scalar', 'value': value, 'units': units, 'improvement_direction': improvement_direction, 'important': important } else: PrintPerfResult(graph_title, trace_title, [value], units)