// // Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: optimization.h // ----------------------------------------------------------------------------- // // This header file defines portable macros for performance optimization. // // This header is included in both C++ code and legacy C code and thus must // remain compatible with both C and C++. C compatibility will be removed if // the legacy code is removed or converted to C++. Do not include this header in // new code that requires C compatibility or assume C compatibility will remain // indefinitely. #ifndef ABSL_BASE_OPTIMIZATION_H_ #define ABSL_BASE_OPTIMIZATION_H_ #include #ifdef __cplusplus // Included for std::unreachable() #include #endif // __cplusplus #include "absl/base/config.h" #include "absl/base/options.h" // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION // // Instructs the compiler to avoid optimizing tail-call recursion. This macro is // useful when you wish to preserve the existing function order within a stack // trace for logging, debugging, or profiling purposes. // // Example: // // int f() { // int result = g(); // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION(); // return result; // } #if defined(__pnacl__) #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; } #elif defined(__clang__) // Clang will not tail call given inline volatile assembly. #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("") #elif defined(__GNUC__) // GCC will not tail call given inline volatile assembly. #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("") #elif defined(_MSC_VER) #include // The __nop() intrinsic blocks the optimisation. #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop() #else #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; } #endif // ABSL_CACHELINE_SIZE // // Explicitly defines the size of the L1 cache for purposes of alignment. // Setting the cacheline size allows you to specify that certain objects be // aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations. // (See below.) // // NOTE: this macro should be replaced with the following C++17 features, when // those are generally available: // // * `std::hardware_constructive_interference_size` // * `std::hardware_destructive_interference_size` // // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html // for more information. #if defined(__GNUC__) // Cache line alignment #if defined(__i386__) || defined(__x86_64__) #define ABSL_CACHELINE_SIZE 64 #elif defined(__powerpc64__) #define ABSL_CACHELINE_SIZE 128 #elif defined(__aarch64__) // We would need to read special register ctr_el0 to find out L1 dcache size. // This value is a good estimate based on a real aarch64 machine. #define ABSL_CACHELINE_SIZE 64 #elif defined(__arm__) // Cache line sizes for ARM: These values are not strictly correct since // cache line sizes depend on implementations, not architectures. There // are even implementations with cache line sizes configurable at boot // time. #if defined(__ARM_ARCH_5T__) #define ABSL_CACHELINE_SIZE 32 #elif defined(__ARM_ARCH_7A__) #define ABSL_CACHELINE_SIZE 64 #endif #endif #endif #ifndef ABSL_CACHELINE_SIZE // A reasonable default guess. Note that overestimates tend to waste more // space, while underestimates tend to waste more time. #define ABSL_CACHELINE_SIZE 64 #endif // ABSL_CACHELINE_ALIGNED // // Indicates that the declared object be cache aligned using // `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to // load a set of related objects in the L1 cache for performance improvements. // Cacheline aligning objects properly allows constructive memory sharing and // prevents destructive (or "false") memory sharing. // // NOTE: callers should replace uses of this macro with `alignas()` using // `std::hardware_constructive_interference_size` and/or // `std::hardware_destructive_interference_size` when C++17 becomes available to // them. // // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html // for more information. // // On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__` // or `__declspec` attribute. For compilers where this is not known to work, // the macro expands to nothing. // // No further guarantees are made here. The result of applying the macro // to variables and types is always implementation-defined. // // WARNING: It is easy to use this attribute incorrectly, even to the point // of causing bugs that are difficult to diagnose, crash, etc. It does not // of itself guarantee that objects are aligned to a cache line. // // NOTE: Some compilers are picky about the locations of annotations such as // this attribute, so prefer to put it at the beginning of your declaration. // For example, // // ABSL_CACHELINE_ALIGNED static Foo* foo = ... // // class ABSL_CACHELINE_ALIGNED Bar { ... // // Recommendations: // // 1) Consult compiler documentation; this comment is not kept in sync as // toolchains evolve. // 2) Verify your use has the intended effect. This often requires inspecting // the generated machine code. // 3) Prefer applying this attribute to individual variables. Avoid // applying it to types. This tends to localize the effect. #if defined(__clang__) || defined(__GNUC__) #define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE))) #elif defined(_MSC_VER) #define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE)) #else #define ABSL_CACHELINE_ALIGNED #endif // ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE // // Enables the compiler to prioritize compilation using static analysis for // likely paths within a boolean branch. // // Example: // // if (ABSL_PREDICT_TRUE(expression)) { // return result; // Faster if more likely // } else { // return 0; // } // // Compilers can use the information that a certain branch is not likely to be // taken (for instance, a CHECK failure) to optimize for the common case in // the absence of better information (ie. compiling gcc with `-fprofile-arcs`). // // Recommendation: Modern CPUs dynamically predict branch execution paths, // typically with accuracy greater than 97%. As a result, annotating every // branch in a codebase is likely counterproductive; however, annotating // specific branches that are both hot and consistently mispredicted is likely // to yield performance improvements. #if ABSL_HAVE_BUILTIN(__builtin_expect) || \ (defined(__GNUC__) && !defined(__clang__)) #define ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false)) #define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true)) #else #define ABSL_PREDICT_FALSE(x) (x) #define ABSL_PREDICT_TRUE(x) (x) #endif // `ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL()` aborts the program in the fastest // possible way, with no attempt at logging. One use is to implement hardening // aborts with ABSL_OPTION_HARDENED. Since this is an internal symbol, it // should not be used directly outside of Abseil. #if ABSL_HAVE_BUILTIN(__builtin_trap) || \ (defined(__GNUC__) && !defined(__clang__)) #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() __builtin_trap() #else #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() abort() #endif // `ABSL_INTERNAL_UNREACHABLE_IMPL()` is the platform specific directive to // indicate that a statement is unreachable, and to allow the compiler to // optimize accordingly. Clients should use `ABSL_UNREACHABLE()`, which is // defined below. #if defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L #define ABSL_INTERNAL_UNREACHABLE_IMPL() std::unreachable() #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable) #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_unreachable() #elif ABSL_HAVE_BUILTIN(__builtin_assume) #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_assume(false) #elif defined(_MSC_VER) #define ABSL_INTERNAL_UNREACHABLE_IMPL() __assume(false) #else #define ABSL_INTERNAL_UNREACHABLE_IMPL() #endif // `ABSL_UNREACHABLE()` is an unreachable statement. A program which reaches // one has undefined behavior, and the compiler may optimize accordingly. #if ABSL_OPTION_HARDENED == 1 && defined(NDEBUG) // Abort in hardened mode to avoid dangerous undefined behavior. #define ABSL_UNREACHABLE() \ do { \ ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL(); \ ABSL_INTERNAL_UNREACHABLE_IMPL(); \ } while (false) #else // The assert only fires in debug mode to aid in debugging. // When NDEBUG is defined, reaching ABSL_UNREACHABLE() is undefined behavior. #define ABSL_UNREACHABLE() \ do { \ /* NOLINTNEXTLINE: misc-static-assert */ \ assert(false && "ABSL_UNREACHABLE reached"); \ ABSL_INTERNAL_UNREACHABLE_IMPL(); \ } while (false) #endif // ABSL_ASSUME(cond) // // Informs the compiler that a condition is always true and that it can assume // it to be true for optimization purposes. // // WARNING: If the condition is false, the program can produce undefined and // potentially dangerous behavior. // // In !NDEBUG mode, the condition is checked with an assert(). // // NOTE: The expression must not have side effects, as it may only be evaluated // in some compilation modes and not others. Some compilers may issue a warning // if the compiler cannot prove the expression has no side effects. For example, // the expression should not use a function call since the compiler cannot prove // that a function call does not have side effects. // // Example: // // int x = ...; // ABSL_ASSUME(x >= 0); // // The compiler can optimize the division to a simple right shift using the // // assumption specified above. // int y = x / 16; // #if !defined(NDEBUG) #define ABSL_ASSUME(cond) assert(cond) #elif ABSL_HAVE_BUILTIN(__builtin_assume) #define ABSL_ASSUME(cond) __builtin_assume(cond) #elif defined(_MSC_VER) #define ABSL_ASSUME(cond) __assume(cond) #elif defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L #define ABSL_ASSUME(cond) \ do { \ if (!(cond)) std::unreachable(); \ } while (false) #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable) #define ABSL_ASSUME(cond) \ do { \ if (!(cond)) __builtin_unreachable(); \ } while (false) #else #define ABSL_ASSUME(cond) \ do { \ static_cast(false && (cond)); \ } while (false) #endif // ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond) // This macro forces small unique name on a static file level symbols like // static local variables or static functions. This is intended to be used in // macro definitions to optimize the cost of generated code. Do NOT use it on // symbols exported from translation unit since it may cause a link time // conflict. // // Example: // // #define MY_MACRO(txt) // namespace { // char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt; // const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME(); // const char* VeryVeryLongFuncName() { return txt; } // } // #if defined(__GNUC__) #define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x #define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \ asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__)) #else #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() #endif #endif // ABSL_BASE_OPTIMIZATION_H_