// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: btree_set.h // ----------------------------------------------------------------------------- // // This header file defines B-tree sets: sorted associative containers of // values. // // * `absl::btree_set<>` // * `absl::btree_multiset<>` // // These B-tree types are similar to the corresponding types in the STL // (`std::set` and `std::multiset`) and generally conform to the STL interfaces // of those types. However, because they are implemented using B-trees, they // are more efficient in most situations. // // Unlike `std::set` and `std::multiset`, which are commonly implemented using // red-black tree nodes, B-tree sets use more generic B-tree nodes able to hold // multiple values per node. Holding multiple values per node often makes // B-tree sets perform better than their `std::set` counterparts, because // multiple entries can be checked within the same cache hit. // // However, these types should not be considered drop-in replacements for // `std::set` and `std::multiset` as there are some API differences, which are // noted in this header file. The most consequential differences with respect to // migrating to b-tree from the STL types are listed in the next paragraph. // Other API differences are minor. // // Importantly, insertions and deletions may invalidate outstanding iterators, // pointers, and references to elements. Such invalidations are typically only // an issue if insertion and deletion operations are interleaved with the use of // more than one iterator, pointer, or reference simultaneously. For this // reason, `insert()`, `erase()`, and `extract_and_get_next()` return a valid // iterator at the current position. // // Another API difference is that btree iterators can be subtracted, and this // is faster than using std::distance. // // B-tree sets are not exception-safe. #ifndef ABSL_CONTAINER_BTREE_SET_H_ #define ABSL_CONTAINER_BTREE_SET_H_ #include "absl/base/attributes.h" #include "absl/container/internal/btree.h" // IWYU pragma: export #include "absl/container/internal/btree_container.h" // IWYU pragma: export namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template struct set_slot_policy; template struct set_params; } // namespace container_internal // absl::btree_set<> // // An `absl::btree_set` is an ordered associative container of unique key // values designed to be a more efficient replacement for `std::set` (in most // cases). // // Keys are sorted using an (optional) comparison function, which defaults to // `std::less`. // // An `absl::btree_set` uses a default allocator of `std::allocator` to // allocate (and deallocate) nodes, and construct and destruct values within // those nodes. You may instead specify a custom allocator `A` (which in turn // requires specifying a custom comparator `C`) as in // `absl::btree_set`. // template , typename Alloc = std::allocator> class ABSL_ATTRIBUTE_OWNER btree_set : public container_internal::btree_set_container< container_internal::btree>> { using Base = typename btree_set::btree_set_container; public: // Constructors and Assignment Operators // // A `btree_set` supports the same overload set as `std::set` // for construction and assignment: // // * Default constructor // // absl::btree_set set1; // // * Initializer List constructor // // absl::btree_set set2 = // {{"huey"}, {"dewey"}, {"louie"},}; // // * Copy constructor // // absl::btree_set set3(set2); // // * Copy assignment operator // // absl::btree_set set4; // set4 = set3; // // * Move constructor // // // Move is guaranteed efficient // absl::btree_set set5(std::move(set4)); // // * Move assignment operator // // // May be efficient if allocators are compatible // absl::btree_set set6; // set6 = std::move(set5); // // * Range constructor // // std::vector v = {"a", "b"}; // absl::btree_set set7(v.begin(), v.end()); btree_set() {} using Base::Base; // btree_set::begin() // // Returns an iterator to the beginning of the `btree_set`. using Base::begin; // btree_set::cbegin() // // Returns a const iterator to the beginning of the `btree_set`. using Base::cbegin; // btree_set::end() // // Returns an iterator to the end of the `btree_set`. using Base::end; // btree_set::cend() // // Returns a const iterator to the end of the `btree_set`. using Base::cend; // btree_set::empty() // // Returns whether or not the `btree_set` is empty. using Base::empty; // btree_set::max_size() // // Returns the largest theoretical possible number of elements within a // `btree_set` under current memory constraints. This value can be thought // of as the largest value of `std::distance(begin(), end())` for a // `btree_set`. using Base::max_size; // btree_set::size() // // Returns the number of elements currently within the `btree_set`. using Base::size; // btree_set::clear() // // Removes all elements from the `btree_set`. Invalidates any references, // pointers, or iterators referring to contained elements. using Base::clear; // btree_set::erase() // // Erases elements within the `btree_set`. Overloads are listed below. // // iterator erase(iterator position): // iterator erase(const_iterator position): // // Erases the element at `position` of the `btree_set`, returning // the iterator pointing to the element after the one that was erased // (or end() if none exists). // // iterator erase(const_iterator first, const_iterator last): // // Erases the elements in the open interval [`first`, `last`), returning // the iterator pointing to the element after the interval that was erased // (or end() if none exists). // // template size_type erase(const K& key): // // Erases the element with the matching key, if it exists, returning the // number of elements erased (0 or 1). using Base::erase; // btree_set::insert() // // Inserts an element of the specified value into the `btree_set`, // returning an iterator pointing to the newly inserted element, provided that // an element with the given key does not already exist. If an insertion // occurs, any references, pointers, or iterators are invalidated. // Overloads are listed below. // // std::pair insert(const value_type& value): // // Inserts a value into the `btree_set`. Returns a pair consisting of an // iterator to the inserted element (or to the element that prevented the // insertion) and a bool denoting whether the insertion took place. // // std::pair insert(value_type&& value): // // Inserts a moveable value into the `btree_set`. Returns a pair // consisting of an iterator to the inserted element (or to the element that // prevented the insertion) and a bool denoting whether the insertion took // place. // // iterator insert(const_iterator hint, const value_type& value): // iterator insert(const_iterator hint, value_type&& value): // // Inserts a value, using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. Returns an iterator to the // inserted element, or to the existing element that prevented the // insertion. // // void insert(InputIterator first, InputIterator last): // // Inserts a range of values [`first`, `last`). // // void insert(std::initializer_list ilist): // // Inserts the elements within the initializer list `ilist`. using Base::insert; // btree_set::emplace() // // Inserts an element of the specified value by constructing it in-place // within the `btree_set`, provided that no element with the given key // already exists. // // The element may be constructed even if there already is an element with the // key in the container, in which case the newly constructed element will be // destroyed immediately. // // If an insertion occurs, any references, pointers, or iterators are // invalidated. using Base::emplace; // btree_set::emplace_hint() // // Inserts an element of the specified value by constructing it in-place // within the `btree_set`, using the position of `hint` as a non-binding // suggestion for where to begin the insertion search, and only inserts // provided that no element with the given key already exists. // // The element may be constructed even if there already is an element with the // key in the container, in which case the newly constructed element will be // destroyed immediately. // // If an insertion occurs, any references, pointers, or iterators are // invalidated. using Base::emplace_hint; // btree_set::extract() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle. Any references, pointers, or iterators // are invalidated. Overloads are listed below. // // node_type extract(const_iterator position): // // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // // template node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_set` // does not contain an element with a matching key, this function returns an // empty node handle. // // NOTE: In this context, `node_type` refers to the C++17 concept of a // move-only type that owns and provides access to the elements in associative // containers (https://en.cppreference.com/w/cpp/container/node_handle). // It does NOT refer to the data layout of the underlying btree. using Base::extract; // btree_set::extract_and_get_next() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle along with an iterator to the next // element. // // extract_and_get_next_return_type extract_and_get_next( // const_iterator position): // // Extracts the element at the indicated position, returns a struct // containing a member named `node`: a node handle owning that extracted // data and a member named `next`: an iterator pointing to the next element // in the btree. using Base::extract_and_get_next; // btree_set::merge() // // Extracts elements from a given `source` btree_set into this // `btree_set`. If the destination `btree_set` already contains an // element with an equivalent key, that element is not extracted. using Base::merge; // btree_set::swap(btree_set& other) // // Exchanges the contents of this `btree_set` with those of the `other` // btree_set, avoiding invocation of any move, copy, or swap operations on // individual elements. // // All iterators and references on the `btree_set` remain valid, excepting // for the past-the-end iterator, which is invalidated. using Base::swap; // btree_set::contains() // // template bool contains(const K& key) const: // // Determines whether an element comparing equal to the given `key` exists // within the `btree_set`, returning `true` if so or `false` otherwise. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::contains; // btree_set::count() // // template size_type count(const K& key) const: // // Returns the number of elements comparing equal to the given `key` within // the `btree_set`. Note that this function will return either `1` or `0` // since duplicate elements are not allowed within a `btree_set`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::count; // btree_set::equal_range() // // Returns a closed range [first, last], defined by a `std::pair` of two // iterators, containing all elements with the passed key in the // `btree_set`. using Base::equal_range; // btree_set::find() // // template iterator find(const K& key): // template const_iterator find(const K& key) const: // // Finds an element with the passed `key` within the `btree_set`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::find; // btree_set::lower_bound() // // template iterator lower_bound(const K& key): // template const_iterator lower_bound(const K& key) const: // // Finds the first element that is not less than `key` within the `btree_set`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::lower_bound; // btree_set::upper_bound() // // template iterator upper_bound(const K& key): // template const_iterator upper_bound(const K& key) const: // // Finds the first element that is greater than `key` within the `btree_set`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::upper_bound; // btree_set::get_allocator() // // Returns the allocator function associated with this `btree_set`. using Base::get_allocator; // btree_set::key_comp(); // // Returns the key comparator associated with this `btree_set`. using Base::key_comp; // btree_set::value_comp(); // // Returns the value comparator associated with this `btree_set`. The keys to // sort the elements are the values themselves, therefore `value_comp` and its // sibling member function `key_comp` are equivalent. using Base::value_comp; }; // absl::swap(absl::btree_set<>, absl::btree_set<>) // // Swaps the contents of two `absl::btree_set` containers. template void swap(btree_set &x, btree_set &y) { return x.swap(y); } // absl::erase_if(absl::btree_set<>, Pred) // // Erases all elements that satisfy the predicate pred from the container. // Returns the number of erased elements. template typename btree_set::size_type erase_if(btree_set &set, Pred pred) { return container_internal::btree_access::erase_if(set, std::move(pred)); } // absl::btree_multiset<> // // An `absl::btree_multiset` is an ordered associative container of // keys and associated values designed to be a more efficient replacement // for `std::multiset` (in most cases). Unlike `absl::btree_set`, a B-tree // multiset allows equivalent elements. // // Keys are sorted using an (optional) comparison function, which defaults to // `std::less`. // // An `absl::btree_multiset` uses a default allocator of `std::allocator` // to allocate (and deallocate) nodes, and construct and destruct values within // those nodes. You may instead specify a custom allocator `A` (which in turn // requires specifying a custom comparator `C`) as in // `absl::btree_multiset`. // template , typename Alloc = std::allocator> class ABSL_ATTRIBUTE_OWNER btree_multiset : public container_internal::btree_multiset_container< container_internal::btree>> { using Base = typename btree_multiset::btree_multiset_container; public: // Constructors and Assignment Operators // // A `btree_multiset` supports the same overload set as `std::set` // for construction and assignment: // // * Default constructor // // absl::btree_multiset set1; // // * Initializer List constructor // // absl::btree_multiset set2 = // {{"huey"}, {"dewey"}, {"louie"},}; // // * Copy constructor // // absl::btree_multiset set3(set2); // // * Copy assignment operator // // absl::btree_multiset set4; // set4 = set3; // // * Move constructor // // // Move is guaranteed efficient // absl::btree_multiset set5(std::move(set4)); // // * Move assignment operator // // // May be efficient if allocators are compatible // absl::btree_multiset set6; // set6 = std::move(set5); // // * Range constructor // // std::vector v = {"a", "b"}; // absl::btree_multiset set7(v.begin(), v.end()); btree_multiset() {} using Base::Base; // btree_multiset::begin() // // Returns an iterator to the beginning of the `btree_multiset`. using Base::begin; // btree_multiset::cbegin() // // Returns a const iterator to the beginning of the `btree_multiset`. using Base::cbegin; // btree_multiset::end() // // Returns an iterator to the end of the `btree_multiset`. using Base::end; // btree_multiset::cend() // // Returns a const iterator to the end of the `btree_multiset`. using Base::cend; // btree_multiset::empty() // // Returns whether or not the `btree_multiset` is empty. using Base::empty; // btree_multiset::max_size() // // Returns the largest theoretical possible number of elements within a // `btree_multiset` under current memory constraints. This value can be // thought of as the largest value of `std::distance(begin(), end())` for a // `btree_multiset`. using Base::max_size; // btree_multiset::size() // // Returns the number of elements currently within the `btree_multiset`. using Base::size; // btree_multiset::clear() // // Removes all elements from the `btree_multiset`. Invalidates any references, // pointers, or iterators referring to contained elements. using Base::clear; // btree_multiset::erase() // // Erases elements within the `btree_multiset`. Overloads are listed below. // // iterator erase(iterator position): // iterator erase(const_iterator position): // // Erases the element at `position` of the `btree_multiset`, returning // the iterator pointing to the element after the one that was erased // (or end() if none exists). // // iterator erase(const_iterator first, const_iterator last): // // Erases the elements in the open interval [`first`, `last`), returning // the iterator pointing to the element after the interval that was erased // (or end() if none exists). // // template size_type erase(const K& key): // // Erases the elements matching the key, if any exist, returning the // number of elements erased. using Base::erase; // btree_multiset::insert() // // Inserts an element of the specified value into the `btree_multiset`, // returning an iterator pointing to the newly inserted element. // Any references, pointers, or iterators are invalidated. Overloads are // listed below. // // iterator insert(const value_type& value): // // Inserts a value into the `btree_multiset`, returning an iterator to the // inserted element. // // iterator insert(value_type&& value): // // Inserts a moveable value into the `btree_multiset`, returning an iterator // to the inserted element. // // iterator insert(const_iterator hint, const value_type& value): // iterator insert(const_iterator hint, value_type&& value): // // Inserts a value, using the position of `hint` as a non-binding suggestion // for where to begin the insertion search. Returns an iterator to the // inserted element. // // void insert(InputIterator first, InputIterator last): // // Inserts a range of values [`first`, `last`). // // void insert(std::initializer_list ilist): // // Inserts the elements within the initializer list `ilist`. using Base::insert; // btree_multiset::emplace() // // Inserts an element of the specified value by constructing it in-place // within the `btree_multiset`. Any references, pointers, or iterators are // invalidated. using Base::emplace; // btree_multiset::emplace_hint() // // Inserts an element of the specified value by constructing it in-place // within the `btree_multiset`, using the position of `hint` as a non-binding // suggestion for where to begin the insertion search. // // Any references, pointers, or iterators are invalidated. using Base::emplace_hint; // btree_multiset::extract() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle. Overloads are listed below. // // node_type extract(const_iterator position): // // Extracts the element at the indicated position and returns a node handle // owning that extracted data. // // template node_type extract(const K& k): // // Extracts the element with the key matching the passed key value and // returns a node handle owning that extracted data. If the `btree_multiset` // does not contain an element with a matching key, this function returns an // empty node handle. // // NOTE: In this context, `node_type` refers to the C++17 concept of a // move-only type that owns and provides access to the elements in associative // containers (https://en.cppreference.com/w/cpp/container/node_handle). // It does NOT refer to the data layout of the underlying btree. using Base::extract; // btree_multiset::extract_and_get_next() // // Extracts the indicated element, erasing it in the process, and returns it // as a C++17-compatible node handle along with an iterator to the next // element. // // extract_and_get_next_return_type extract_and_get_next( // const_iterator position): // // Extracts the element at the indicated position, returns a struct // containing a member named `node`: a node handle owning that extracted // data and a member named `next`: an iterator pointing to the next element // in the btree. using Base::extract_and_get_next; // btree_multiset::merge() // // Extracts all elements from a given `source` btree_multiset into this // `btree_multiset`. using Base::merge; // btree_multiset::swap(btree_multiset& other) // // Exchanges the contents of this `btree_multiset` with those of the `other` // btree_multiset, avoiding invocation of any move, copy, or swap operations // on individual elements. // // All iterators and references on the `btree_multiset` remain valid, // excepting for the past-the-end iterator, which is invalidated. using Base::swap; // btree_multiset::contains() // // template bool contains(const K& key) const: // // Determines whether an element comparing equal to the given `key` exists // within the `btree_multiset`, returning `true` if so or `false` otherwise. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::contains; // btree_multiset::count() // // template size_type count(const K& key) const: // // Returns the number of elements comparing equal to the given `key` within // the `btree_multiset`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::count; // btree_multiset::equal_range() // // Returns a closed range [first, last], defined by a `std::pair` of two // iterators, containing all elements with the passed key in the // `btree_multiset`. using Base::equal_range; // btree_multiset::find() // // template iterator find(const K& key): // template const_iterator find(const K& key) const: // // Finds an element with the passed `key` within the `btree_multiset`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::find; // btree_multiset::lower_bound() // // template iterator lower_bound(const K& key): // template const_iterator lower_bound(const K& key) const: // // Finds the first element that is not less than `key` within the // `btree_multiset`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::lower_bound; // btree_multiset::upper_bound() // // template iterator upper_bound(const K& key): // template const_iterator upper_bound(const K& key) const: // // Finds the first element that is greater than `key` within the // `btree_multiset`. // // Supports heterogeneous lookup, provided that the set has a compatible // heterogeneous comparator. using Base::upper_bound; // btree_multiset::get_allocator() // // Returns the allocator function associated with this `btree_multiset`. using Base::get_allocator; // btree_multiset::key_comp(); // // Returns the key comparator associated with this `btree_multiset`. using Base::key_comp; // btree_multiset::value_comp(); // // Returns the value comparator associated with this `btree_multiset`. The // keys to sort the elements are the values themselves, therefore `value_comp` // and its sibling member function `key_comp` are equivalent. using Base::value_comp; }; // absl::swap(absl::btree_multiset<>, absl::btree_multiset<>) // // Swaps the contents of two `absl::btree_multiset` containers. template void swap(btree_multiset &x, btree_multiset &y) { return x.swap(y); } // absl::erase_if(absl::btree_multiset<>, Pred) // // Erases all elements that satisfy the predicate pred from the container. // Returns the number of erased elements. template typename btree_multiset::size_type erase_if( btree_multiset & set, Pred pred) { return container_internal::btree_access::erase_if(set, std::move(pred)); } namespace container_internal { // This type implements the necessary functions from the // absl::container_internal::slot_type interface for btree_(multi)set. template struct set_slot_policy { using slot_type = Key; using value_type = Key; using mutable_value_type = Key; static value_type &element(slot_type *slot) { return *slot; } static const value_type &element(const slot_type *slot) { return *slot; } template static void construct(Alloc *alloc, slot_type *slot, Args &&...args) { absl::allocator_traits::construct(*alloc, slot, std::forward(args)...); } template static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { absl::allocator_traits::construct(*alloc, slot, std::move(*other)); } template static void construct(Alloc *alloc, slot_type *slot, const slot_type *other) { absl::allocator_traits::construct(*alloc, slot, *other); } template static void destroy(Alloc *alloc, slot_type *slot) { absl::allocator_traits::destroy(*alloc, slot); } }; // A parameters structure for holding the type parameters for a btree_set. // Compare and Alloc should be nothrow copy-constructible. template struct set_params : common_params> { using value_type = Key; using slot_type = typename set_params::common_params::slot_type; template static const V &key(const V &value) { return value; } static const Key &key(const slot_type *slot) { return *slot; } static const Key &key(slot_type *slot) { return *slot; } }; } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CONTAINER_BTREE_SET_H_