// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/container/internal/hashtablez_sampler.h" #include #include #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/per_thread_tls.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/base/no_destructor.h" #include "absl/base/optimization.h" #include "absl/debugging/stacktrace.h" #include "absl/memory/memory.h" #include "absl/profiling/internal/exponential_biased.h" #include "absl/profiling/internal/sample_recorder.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/utility/utility.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr int HashtablezInfo::kMaxStackDepth; #endif namespace { ABSL_CONST_INIT std::atomic g_hashtablez_enabled{ false }; ABSL_CONST_INIT std::atomic g_hashtablez_sample_parameter{1 << 10}; std::atomic g_hashtablez_config_listener{nullptr}; #if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) ABSL_PER_THREAD_TLS_KEYWORD absl::profiling_internal::ExponentialBiased g_exponential_biased_generator; #endif void TriggerHashtablezConfigListener() { auto* listener = g_hashtablez_config_listener.load(std::memory_order_acquire); if (listener != nullptr) listener(); } } // namespace #if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) ABSL_PER_THREAD_TLS_KEYWORD SamplingState global_next_sample = {0, 0}; #endif // defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) HashtablezSampler& GlobalHashtablezSampler() { static absl::NoDestructor sampler; return *sampler; } HashtablezInfo::HashtablezInfo() = default; HashtablezInfo::~HashtablezInfo() = default; void HashtablezInfo::PrepareForSampling(int64_t stride, size_t inline_element_size_value, size_t key_size_value, size_t value_size_value, uint16_t soo_capacity_value) { capacity.store(0, std::memory_order_relaxed); size.store(0, std::memory_order_relaxed); num_erases.store(0, std::memory_order_relaxed); num_rehashes.store(0, std::memory_order_relaxed); max_probe_length.store(0, std::memory_order_relaxed); total_probe_length.store(0, std::memory_order_relaxed); hashes_bitwise_or.store(0, std::memory_order_relaxed); hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed); hashes_bitwise_xor.store(0, std::memory_order_relaxed); max_reserve.store(0, std::memory_order_relaxed); create_time = absl::Now(); weight = stride; // The inliner makes hardcoded skip_count difficult (especially when combined // with LTO). We use the ability to exclude stacks by regex when encoding // instead. depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth, /* skip_count= */ 0); inline_element_size = inline_element_size_value; key_size = key_size_value; value_size = value_size_value; soo_capacity = soo_capacity_value; } static bool ShouldForceSampling() { enum ForceState { kDontForce, kForce, kUninitialized }; ABSL_CONST_INIT static std::atomic global_state{ kUninitialized}; ForceState state = global_state.load(std::memory_order_relaxed); if (ABSL_PREDICT_TRUE(state == kDontForce)) return false; if (state == kUninitialized) { state = ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)() ? kForce : kDontForce; global_state.store(state, std::memory_order_relaxed); } return state == kForce; } HashtablezInfo* SampleSlow(SamplingState& next_sample, size_t inline_element_size, size_t key_size, size_t value_size, uint16_t soo_capacity) { if (ABSL_PREDICT_FALSE(ShouldForceSampling())) { next_sample.next_sample = 1; const int64_t old_stride = exchange(next_sample.sample_stride, 1); HashtablezInfo* result = GlobalHashtablezSampler().Register( old_stride, inline_element_size, key_size, value_size, soo_capacity); return result; } #if !defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE) next_sample = { std::numeric_limits::max(), std::numeric_limits::max(), }; return nullptr; #else bool first = next_sample.next_sample < 0; const int64_t next_stride = g_exponential_biased_generator.GetStride( g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); next_sample.next_sample = next_stride; const int64_t old_stride = exchange(next_sample.sample_stride, next_stride); // Small values of interval are equivalent to just sampling next time. ABSL_ASSERT(next_stride >= 1); // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold // low enough that we will start sampling in a reasonable time, so we just use // the default sampling rate. if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr; // We will only be negative on our first count, so we should just retry in // that case. if (first) { if (ABSL_PREDICT_TRUE(--next_sample.next_sample > 0)) return nullptr; return SampleSlow(next_sample, inline_element_size, key_size, value_size, soo_capacity); } return GlobalHashtablezSampler().Register(old_stride, inline_element_size, key_size, value_size, soo_capacity); #endif } void UnsampleSlow(HashtablezInfo* info) { GlobalHashtablezSampler().Unregister(info); } void RecordRehashSlow(HashtablezInfo* info, size_t total_probe_length) { #ifdef ABSL_INTERNAL_HAVE_SSE2 total_probe_length /= 16; #else total_probe_length /= 8; #endif info->total_probe_length.store(total_probe_length, std::memory_order_relaxed); info->num_erases.store(0, std::memory_order_relaxed); // There is only one concurrent writer, so `load` then `store` is sufficient // instead of using `fetch_add`. info->num_rehashes.store( 1 + info->num_rehashes.load(std::memory_order_relaxed), std::memory_order_relaxed); } void RecordReservationSlow(HashtablezInfo* info, size_t target_capacity) { info->max_reserve.store( (std::max)(info->max_reserve.load(std::memory_order_relaxed), target_capacity), std::memory_order_relaxed); } void RecordClearedReservationSlow(HashtablezInfo* info) { info->max_reserve.store(0, std::memory_order_relaxed); } void RecordStorageChangedSlow(HashtablezInfo* info, size_t size, size_t capacity) { info->size.store(size, std::memory_order_relaxed); info->capacity.store(capacity, std::memory_order_relaxed); if (size == 0) { // This is a clear, reset the total/num_erases too. info->total_probe_length.store(0, std::memory_order_relaxed); info->num_erases.store(0, std::memory_order_relaxed); } } void RecordInsertSlow(HashtablezInfo* info, size_t hash, size_t distance_from_desired) { // SwissTables probe in groups of 16, so scale this to count items probes and // not offset from desired. size_t probe_length = distance_from_desired; #ifdef ABSL_INTERNAL_HAVE_SSE2 probe_length /= 16; #else probe_length /= 8; #endif info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed); info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed); info->hashes_bitwise_xor.fetch_xor(hash, std::memory_order_relaxed); info->max_probe_length.store( std::max(info->max_probe_length.load(std::memory_order_relaxed), probe_length), std::memory_order_relaxed); info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed); info->size.fetch_add(1, std::memory_order_relaxed); } void RecordEraseSlow(HashtablezInfo* info) { info->size.fetch_sub(1, std::memory_order_relaxed); // There is only one concurrent writer, so `load` then `store` is sufficient // instead of using `fetch_add`. info->num_erases.store(1 + info->num_erases.load(std::memory_order_relaxed), std::memory_order_relaxed); } void SetHashtablezConfigListener(HashtablezConfigListener l) { g_hashtablez_config_listener.store(l, std::memory_order_release); } bool IsHashtablezEnabled() { return g_hashtablez_enabled.load(std::memory_order_acquire); } void SetHashtablezEnabled(bool enabled) { SetHashtablezEnabledInternal(enabled); TriggerHashtablezConfigListener(); } void SetHashtablezEnabledInternal(bool enabled) { g_hashtablez_enabled.store(enabled, std::memory_order_release); } int32_t GetHashtablezSampleParameter() { return g_hashtablez_sample_parameter.load(std::memory_order_acquire); } void SetHashtablezSampleParameter(int32_t rate) { SetHashtablezSampleParameterInternal(rate); TriggerHashtablezConfigListener(); } void SetHashtablezSampleParameterInternal(int32_t rate) { if (rate > 0) { g_hashtablez_sample_parameter.store(rate, std::memory_order_release); } else { ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld", static_cast(rate)); // NOLINT(runtime/int) } } size_t GetHashtablezMaxSamples() { return GlobalHashtablezSampler().GetMaxSamples(); } void SetHashtablezMaxSamples(size_t max) { SetHashtablezMaxSamplesInternal(max); TriggerHashtablezConfigListener(); } void SetHashtablezMaxSamplesInternal(size_t max) { if (max > 0) { GlobalHashtablezSampler().SetMaxSamples(max); } else { ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: 0"); } } } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl