// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // For reference check out: // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling #include "absl/debugging/internal/demangle.h" #include #include #include #include #include #include #include #include "absl/base/config.h" #include "absl/debugging/internal/demangle_rust.h" #if ABSL_INTERNAL_HAS_CXA_DEMANGLE #include #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace debugging_internal { typedef struct { const char *abbrev; const char *real_name; // Number of arguments in context, or 0 if disallowed. int arity; } AbbrevPair; // List of operators from Itanium C++ ABI. static const AbbrevPair kOperatorList[] = { // New has special syntax. {"nw", "new", 0}, {"na", "new[]", 0}, // Special-cased elsewhere to support the optional gs prefix. {"dl", "delete", 1}, {"da", "delete[]", 1}, {"aw", "co_await", 1}, {"ps", "+", 1}, // "positive" {"ng", "-", 1}, // "negative" {"ad", "&", 1}, // "address-of" {"de", "*", 1}, // "dereference" {"co", "~", 1}, {"pl", "+", 2}, {"mi", "-", 2}, {"ml", "*", 2}, {"dv", "/", 2}, {"rm", "%", 2}, {"an", "&", 2}, {"or", "|", 2}, {"eo", "^", 2}, {"aS", "=", 2}, {"pL", "+=", 2}, {"mI", "-=", 2}, {"mL", "*=", 2}, {"dV", "/=", 2}, {"rM", "%=", 2}, {"aN", "&=", 2}, {"oR", "|=", 2}, {"eO", "^=", 2}, {"ls", "<<", 2}, {"rs", ">>", 2}, {"lS", "<<=", 2}, {"rS", ">>=", 2}, {"ss", "<=>", 2}, {"eq", "==", 2}, {"ne", "!=", 2}, {"lt", "<", 2}, {"gt", ">", 2}, {"le", "<=", 2}, {"ge", ">=", 2}, {"nt", "!", 1}, {"aa", "&&", 2}, {"oo", "||", 2}, {"pp", "++", 1}, {"mm", "--", 1}, {"cm", ",", 2}, {"pm", "->*", 2}, {"pt", "->", 0}, // Special syntax {"cl", "()", 0}, // Special syntax {"ix", "[]", 2}, {"qu", "?", 3}, {"st", "sizeof", 0}, // Special syntax {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions. {"sZ", "sizeof...", 0}, // Special syntax {nullptr, nullptr, 0}, }; // List of builtin types from Itanium C++ ABI. // // Invariant: only one- or two-character type abbreviations here. static const AbbrevPair kBuiltinTypeList[] = { {"v", "void", 0}, {"w", "wchar_t", 0}, {"b", "bool", 0}, {"c", "char", 0}, {"a", "signed char", 0}, {"h", "unsigned char", 0}, {"s", "short", 0}, {"t", "unsigned short", 0}, {"i", "int", 0}, {"j", "unsigned int", 0}, {"l", "long", 0}, {"m", "unsigned long", 0}, {"x", "long long", 0}, {"y", "unsigned long long", 0}, {"n", "__int128", 0}, {"o", "unsigned __int128", 0}, {"f", "float", 0}, {"d", "double", 0}, {"e", "long double", 0}, {"g", "__float128", 0}, {"z", "ellipsis", 0}, {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits) {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits) {"Dc", "decltype(auto)", 0}, {"Da", "auto", 0}, {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr) {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits) {"Di", "char32_t", 0}, {"Du", "char8_t", 0}, {"Ds", "char16_t", 0}, {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits) {nullptr, nullptr, 0}, }; // List of substitutions Itanium C++ ABI. static const AbbrevPair kSubstitutionList[] = { {"St", "", 0}, {"Sa", "allocator", 0}, {"Sb", "basic_string", 0}, // std::basic_string,std::allocator > {"Ss", "string", 0}, // std::basic_istream > {"Si", "istream", 0}, // std::basic_ostream > {"So", "ostream", 0}, // std::basic_iostream > {"Sd", "iostream", 0}, {nullptr, nullptr, 0}, }; // State needed for demangling. This struct is copied in almost every stack // frame, so every byte counts. typedef struct { int mangled_idx; // Cursor of mangled name. int out_cur_idx; // Cursor of output string. int prev_name_idx; // For constructors/destructors. unsigned int prev_name_length : 16; // For constructors/destructors. signed int nest_level : 15; // For nested names. unsigned int append : 1; // Append flag. // Note: for some reason MSVC can't pack "bool append : 1" into the same int // with the above two fields, so we use an int instead. Amusingly it can pack // "signed bool" as expected, but relying on that to continue to be a legal // type seems ill-advised (as it's illegal in at least clang). } ParseState; static_assert(sizeof(ParseState) == 4 * sizeof(int), "unexpected size of ParseState"); // One-off state for demangling that's not subject to backtracking -- either // constant data, data that's intentionally immune to backtracking (steps), or // data that would never be changed by backtracking anyway (recursion_depth). // // Only one copy of this exists for each call to Demangle, so the size of this // struct is nearly inconsequential. typedef struct { const char *mangled_begin; // Beginning of input string. char *out; // Beginning of output string. int out_end_idx; // One past last allowed output character. int recursion_depth; // For stack exhaustion prevention. int steps; // Cap how much work we'll do, regardless of depth. ParseState parse_state; // Backtrackable state copied for most frames. // Conditionally compiled support for marking the position of the first // construct Demangle couldn't parse. This preprocessor symbol is intended // for use by Abseil demangler maintainers only; its behavior is not part of // Abseil's public interface. #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK int high_water_mark; // Input position where parsing failed. bool too_complex; // True if any guard.IsTooComplex() call returned true. #endif } State; namespace { #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK void UpdateHighWaterMark(State *state) { if (state->high_water_mark < state->parse_state.mangled_idx) { state->high_water_mark = state->parse_state.mangled_idx; } } void ReportHighWaterMark(State *state) { // Write out the mangled name with the trouble point marked, provided that the // output buffer is large enough and the mangled name did not hit a complexity // limit (in which case the high water mark wouldn't point out an unparsable // construct, only the point where a budget ran out). const size_t input_length = std::strlen(state->mangled_begin); if (input_length + 6 > static_cast(state->out_end_idx) || state->too_complex) { if (state->out_end_idx > 0) state->out[0] = '\0'; return; } const size_t high_water_mark = static_cast(state->high_water_mark); std::memcpy(state->out, state->mangled_begin, high_water_mark); std::memcpy(state->out + high_water_mark, "--!--", 5); std::memcpy(state->out + high_water_mark + 5, state->mangled_begin + high_water_mark, input_length - high_water_mark); state->out[input_length + 5] = '\0'; } #else void UpdateHighWaterMark(State *) {} void ReportHighWaterMark(State *) {} #endif // Prevent deep recursion / stack exhaustion. // Also prevent unbounded handling of complex inputs. class ComplexityGuard { public: explicit ComplexityGuard(State *state) : state_(state) { ++state->recursion_depth; ++state->steps; } ~ComplexityGuard() { --state_->recursion_depth; } // 256 levels of recursion seems like a reasonable upper limit on depth. // 128 is not enough to demangle synthetic tests from demangle_unittest.txt: // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..." static constexpr int kRecursionDepthLimit = 256; // We're trying to pick a charitable upper-limit on how many parse steps are // necessary to handle something that a human could actually make use of. // This is mostly in place as a bound on how much work we'll do if we are // asked to demangle an mangled name from an untrusted source, so it should be // much larger than the largest expected symbol, but much smaller than the // amount of work we can do in, e.g., a second. // // Some real-world symbols from an arbitrary binary started failing between // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set // the limit. // // Spending one second on 2^17 parse steps would require each step to take // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in // under a second. static constexpr int kParseStepsLimit = 1 << 17; bool IsTooComplex() const { if (state_->recursion_depth > kRecursionDepthLimit || state_->steps > kParseStepsLimit) { #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK state_->too_complex = true; #endif return true; } return false; } private: State *state_; }; } // namespace // We don't use strlen() in libc since it's not guaranteed to be async // signal safe. static size_t StrLen(const char *str) { size_t len = 0; while (*str != '\0') { ++str; ++len; } return len; } // Returns true if "str" has at least "n" characters remaining. static bool AtLeastNumCharsRemaining(const char *str, size_t n) { for (size_t i = 0; i < n; ++i) { if (str[i] == '\0') { return false; } } return true; } // Returns true if "str" has "prefix" as a prefix. static bool StrPrefix(const char *str, const char *prefix) { size_t i = 0; while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) { ++i; } return prefix[i] == '\0'; // Consumed everything in "prefix". } static void InitState(State* state, const char* mangled, char* out, size_t out_size) { state->mangled_begin = mangled; state->out = out; state->out_end_idx = static_cast(out_size); state->recursion_depth = 0; state->steps = 0; #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK state->high_water_mark = 0; state->too_complex = false; #endif state->parse_state.mangled_idx = 0; state->parse_state.out_cur_idx = 0; state->parse_state.prev_name_idx = 0; state->parse_state.prev_name_length = 0; state->parse_state.nest_level = -1; state->parse_state.append = true; } static inline const char *RemainingInput(State *state) { return &state->mangled_begin[state->parse_state.mangled_idx]; } // Returns true and advances "mangled_idx" if we find "one_char_token" // at "mangled_idx" position. It is assumed that "one_char_token" does // not contain '\0'. static bool ParseOneCharToken(State *state, const char one_char_token) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == one_char_token) { ++state->parse_state.mangled_idx; UpdateHighWaterMark(state); return true; } return false; } // Returns true and advances "mangled_idx" if we find "two_char_token" // at "mangled_idx" position. It is assumed that "two_char_token" does // not contain '\0'. static bool ParseTwoCharToken(State *state, const char *two_char_token) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == two_char_token[0] && RemainingInput(state)[1] == two_char_token[1]) { state->parse_state.mangled_idx += 2; UpdateHighWaterMark(state); return true; } return false; } // Returns true and advances "mangled_idx" if we find "three_char_token" // at "mangled_idx" position. It is assumed that "three_char_token" does // not contain '\0'. static bool ParseThreeCharToken(State *state, const char *three_char_token) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == three_char_token[0] && RemainingInput(state)[1] == three_char_token[1] && RemainingInput(state)[2] == three_char_token[2]) { state->parse_state.mangled_idx += 3; UpdateHighWaterMark(state); return true; } return false; } // Returns true and advances "mangled_idx" if we find a copy of the // NUL-terminated string "long_token" at "mangled_idx" position. static bool ParseLongToken(State *state, const char *long_token) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; int i = 0; for (; long_token[i] != '\0'; ++i) { // Note that we cannot run off the end of the NUL-terminated input here. // Inside the loop body, long_token[i] is known to be different from NUL. // So if we read the NUL on the end of the input here, we return at once. if (RemainingInput(state)[i] != long_token[i]) return false; } state->parse_state.mangled_idx += i; UpdateHighWaterMark(state); return true; } // Returns true and advances "mangled_cur" if we find any character in // "char_class" at "mangled_cur" position. static bool ParseCharClass(State *state, const char *char_class) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (RemainingInput(state)[0] == '\0') { return false; } const char *p = char_class; for (; *p != '\0'; ++p) { if (RemainingInput(state)[0] == *p) { ++state->parse_state.mangled_idx; UpdateHighWaterMark(state); return true; } } return false; } static bool ParseDigit(State *state, int *digit) { char c = RemainingInput(state)[0]; if (ParseCharClass(state, "0123456789")) { if (digit != nullptr) { *digit = c - '0'; } return true; } return false; } // This function is used for handling an optional non-terminal. static bool Optional(bool /*status*/) { return true; } // This function is used for handling + syntax. typedef bool (*ParseFunc)(State *); static bool OneOrMore(ParseFunc parse_func, State *state) { if (parse_func(state)) { while (parse_func(state)) { } return true; } return false; } // This function is used for handling * syntax. The function // always returns true and must be followed by a termination token or a // terminating sequence not handled by parse_func (e.g. // ParseOneCharToken(state, 'E')). static bool ZeroOrMore(ParseFunc parse_func, State *state) { while (parse_func(state)) { } return true; } // Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is // set to out_end_idx+1. The output string is ensured to // always terminate with '\0' as long as there is no overflow. static void Append(State *state, const char *const str, const size_t length) { for (size_t i = 0; i < length; ++i) { if (state->parse_state.out_cur_idx + 1 < state->out_end_idx) { // +1 for '\0' state->out[state->parse_state.out_cur_idx++] = str[i]; } else { // signal overflow state->parse_state.out_cur_idx = state->out_end_idx + 1; break; } } if (state->parse_state.out_cur_idx < state->out_end_idx) { state->out[state->parse_state.out_cur_idx] = '\0'; // Terminate it with '\0' } } // We don't use equivalents in libc to avoid locale issues. static bool IsLower(char c) { return c >= 'a' && c <= 'z'; } static bool IsAlpha(char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } static bool IsDigit(char c) { return c >= '0' && c <= '9'; } // Returns true if "str" is a function clone suffix. These suffixes are used // by GCC 4.5.x and later versions (and our locally-modified version of GCC // 4.4.x) to indicate functions which have been cloned during optimization. // We treat any sequence (.+.+)+ as a function clone suffix. // Additionally, '_' is allowed along with the alphanumeric sequence. static bool IsFunctionCloneSuffix(const char *str) { size_t i = 0; while (str[i] != '\0') { bool parsed = false; // Consume a single [. | _]*[.]* sequence. if (str[i] == '.' && (IsAlpha(str[i + 1]) || str[i + 1] == '_')) { parsed = true; i += 2; while (IsAlpha(str[i]) || str[i] == '_') { ++i; } } if (str[i] == '.' && IsDigit(str[i + 1])) { parsed = true; i += 2; while (IsDigit(str[i])) { ++i; } } if (!parsed) return false; } return true; // Consumed everything in "str". } static bool EndsWith(State *state, const char chr) { return state->parse_state.out_cur_idx > 0 && state->parse_state.out_cur_idx < state->out_end_idx && chr == state->out[state->parse_state.out_cur_idx - 1]; } // Append "str" with some tweaks, iff "append" state is true. static void MaybeAppendWithLength(State *state, const char *const str, const size_t length) { if (state->parse_state.append && length > 0) { // Append a space if the output buffer ends with '<' and "str" // starts with '<' to avoid <<<. if (str[0] == '<' && EndsWith(state, '<')) { Append(state, " ", 1); } // Remember the last identifier name for ctors/dtors, // but only if we haven't yet overflown the buffer. if (state->parse_state.out_cur_idx < state->out_end_idx && (IsAlpha(str[0]) || str[0] == '_')) { state->parse_state.prev_name_idx = state->parse_state.out_cur_idx; state->parse_state.prev_name_length = static_cast(length); } Append(state, str, length); } } // Appends a positive decimal number to the output if appending is enabled. static bool MaybeAppendDecimal(State *state, int val) { // Max {32-64}-bit unsigned int is 20 digits. constexpr size_t kMaxLength = 20; char buf[kMaxLength]; // We can't use itoa or sprintf as neither is specified to be // async-signal-safe. if (state->parse_state.append) { // We can't have a one-before-the-beginning pointer, so instead start with // one-past-the-end and manipulate one character before the pointer. char *p = &buf[kMaxLength]; do { // val=0 is the only input that should write a leading zero digit. *--p = static_cast((val % 10) + '0'); val /= 10; } while (p > buf && val != 0); // 'p' landed on the last character we set. How convenient. Append(state, p, kMaxLength - static_cast(p - buf)); } return true; } // A convenient wrapper around MaybeAppendWithLength(). // Returns true so that it can be placed in "if" conditions. static bool MaybeAppend(State *state, const char *const str) { if (state->parse_state.append) { size_t length = StrLen(str); MaybeAppendWithLength(state, str, length); } return true; } // This function is used for handling nested names. static bool EnterNestedName(State *state) { state->parse_state.nest_level = 0; return true; } // This function is used for handling nested names. static bool LeaveNestedName(State *state, int16_t prev_value) { state->parse_state.nest_level = prev_value; return true; } // Disable the append mode not to print function parameters, etc. static bool DisableAppend(State *state) { state->parse_state.append = false; return true; } // Restore the append mode to the previous state. static bool RestoreAppend(State *state, bool prev_value) { state->parse_state.append = prev_value; return true; } // Increase the nest level for nested names. static void MaybeIncreaseNestLevel(State *state) { if (state->parse_state.nest_level > -1) { ++state->parse_state.nest_level; } } // Appends :: for nested names if necessary. static void MaybeAppendSeparator(State *state) { if (state->parse_state.nest_level >= 1) { MaybeAppend(state, "::"); } } // Cancel the last separator if necessary. static void MaybeCancelLastSeparator(State *state) { if (state->parse_state.nest_level >= 1 && state->parse_state.append && state->parse_state.out_cur_idx >= 2) { state->parse_state.out_cur_idx -= 2; state->out[state->parse_state.out_cur_idx] = '\0'; } } // Returns true if the identifier of the given length pointed to by // "mangled_cur" is anonymous namespace. static bool IdentifierIsAnonymousNamespace(State *state, size_t length) { // Returns true if "anon_prefix" is a proper prefix of "mangled_cur". static const char anon_prefix[] = "_GLOBAL__N_"; return (length > (sizeof(anon_prefix) - 1) && StrPrefix(RemainingInput(state), anon_prefix)); } // Forward declarations of our parsing functions. static bool ParseMangledName(State *state); static bool ParseEncoding(State *state); static bool ParseName(State *state); static bool ParseUnscopedName(State *state); static bool ParseNestedName(State *state); static bool ParsePrefix(State *state); static bool ParseUnqualifiedName(State *state); static bool ParseSourceName(State *state); static bool ParseLocalSourceName(State *state); static bool ParseUnnamedTypeName(State *state); static bool ParseNumber(State *state, int *number_out); static bool ParseFloatNumber(State *state); static bool ParseSeqId(State *state); static bool ParseIdentifier(State *state, size_t length); static bool ParseOperatorName(State *state, int *arity); static bool ParseConversionOperatorType(State *state); static bool ParseSpecialName(State *state); static bool ParseCallOffset(State *state); static bool ParseNVOffset(State *state); static bool ParseVOffset(State *state); static bool ParseAbiTags(State *state); static bool ParseCtorDtorName(State *state); static bool ParseDecltype(State *state); static bool ParseType(State *state); static bool ParseCVQualifiers(State *state); static bool ParseExtendedQualifier(State *state); static bool ParseBuiltinType(State *state); static bool ParseVendorExtendedType(State *state); static bool ParseFunctionType(State *state); static bool ParseBareFunctionType(State *state); static bool ParseOverloadAttribute(State *state); static bool ParseClassEnumType(State *state); static bool ParseArrayType(State *state); static bool ParsePointerToMemberType(State *state); static bool ParseTemplateParam(State *state); static bool ParseTemplateParamDecl(State *state); static bool ParseTemplateTemplateParam(State *state); static bool ParseTemplateArgs(State *state); static bool ParseTemplateArg(State *state); static bool ParseBaseUnresolvedName(State *state); static bool ParseUnresolvedName(State *state); static bool ParseUnresolvedQualifierLevel(State *state); static bool ParseUnionSelector(State* state); static bool ParseFunctionParam(State* state); static bool ParseBracedExpression(State *state); static bool ParseExpression(State *state); static bool ParseInitializer(State *state); static bool ParseExprPrimary(State *state); static bool ParseExprCastValueAndTrailingE(State *state); static bool ParseQRequiresClauseExpr(State *state); static bool ParseRequirement(State *state); static bool ParseTypeConstraint(State *state); static bool ParseLocalName(State *state); static bool ParseLocalNameSuffix(State *state); static bool ParseDiscriminator(State *state); static bool ParseSubstitution(State *state, bool accept_std); // Implementation note: the following code is a straightforward // translation of the Itanium C++ ABI defined in BNF with a couple of // exceptions. // // - Support GNU extensions not defined in the Itanium C++ ABI // - and are combined to avoid infinite loop // - Reorder patterns to shorten the code // - Reorder patterns to give greedier functions precedence // We'll mark "Less greedy than" for these cases in the code // // Each parsing function changes the parse state and returns true on // success, or returns false and doesn't change the parse state (note: // the parse-steps counter increases regardless of success or failure). // To ensure that the parse state isn't changed in the latter case, we // save the original state before we call multiple parsing functions // consecutively with &&, and restore it if unsuccessful. See // ParseEncoding() as an example of this convention. We follow the // convention throughout the code. // // Originally we tried to do demangling without following the full ABI // syntax but it turned out we needed to follow the full syntax to // parse complicated cases like nested template arguments. Note that // implementing a full-fledged demangler isn't trivial (libiberty's // cp-demangle.c has +4300 lines). // // Note that (foo) in <(foo) ...> is a modifier to be ignored. // // Reference: // - Itanium C++ ABI // // ::= _Z static bool ParseMangledName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return ParseTwoCharToken(state, "_Z") && ParseEncoding(state); } // ::= <(function) name> // [`Q` ] // ::= <(data) name> // ::= // // NOTE: Based on http://shortn/_Hoq9qG83rx static bool ParseEncoding(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; // Since the first two productions both start with , attempt // to parse it only once to avoid exponential blowup of backtracking. // // We're careful about exponential blowup because recursively // appears in other productions downstream of its first two productions, // which means that every call to `ParseName` would possibly indirectly // result in two calls to `ParseName` etc. if (ParseName(state)) { if (!ParseBareFunctionType(state)) { return true; // <(data) name> } // Parsed: <(function) name> // Pending: [`Q` ] ParseQRequiresClauseExpr(state); // restores state on failure return true; } if (ParseSpecialName(state)) { return true; // } return false; } // ::= // ::= // ::= // ::= static bool ParseName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseNestedName(state) || ParseLocalName(state)) { return true; } // We reorganize the productions to avoid re-parsing unscoped names. // - Inline productions: // ::= // ::= // ::= // - Merge the two productions that start with unscoped-name: // ::= [] ParseState copy = state->parse_state; // "std<...>" isn't a valid name. if (ParseSubstitution(state, /*accept_std=*/false) && ParseTemplateArgs(state)) { return true; } state->parse_state = copy; // Note there's no need to restore state after this since only the first // subparser can fail. return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state)); } // ::= // ::= St static bool ParseUnscopedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseUnqualifiedName(state)) { return true; } ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") && ParseUnqualifiedName(state)) { return true; } state->parse_state = copy; return false; } // ::= R // lvalue method reference qualifier // ::= O // rvalue method reference qualifier static inline bool ParseRefQualifier(State *state) { return ParseCharClass(state, "OR"); } // ::= N [] [] // E // ::= N [] [] // E static bool ParseNestedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'N') && EnterNestedName(state) && Optional(ParseCVQualifiers(state)) && Optional(ParseRefQualifier(state)) && ParsePrefix(state) && LeaveNestedName(state, copy.nest_level) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // This part is tricky. If we literally translate them to code, we'll // end up infinite loop. Hence we merge them to avoid the case. // // ::= // ::= // ::= // ::= // ::= // ::= # empty // ::= <(template) unqualified-name> // ::= // ::= // ::= static bool ParsePrefix(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; bool has_something = false; while (true) { MaybeAppendSeparator(state); if (ParseTemplateParam(state) || ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/true) || // Although the official grammar does not mention it, nested-names // shaped like Nu14__some_builtinIiE6memberE occur in practice, and it // is not clear what else a compiler is supposed to do when a // vendor-extended type has named members. ParseVendorExtendedType(state) || ParseUnscopedName(state) || (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) { has_something = true; MaybeIncreaseNestLevel(state); continue; } MaybeCancelLastSeparator(state); if (has_something && ParseTemplateArgs(state)) { return ParsePrefix(state); } else { break; } } return true; } // ::= [] // ::= [] // ::= [] // ::= [] // ::= [] // ::= DC + E # C++17 structured binding // ::= F # C++20 constrained friend // ::= F # C++20 constrained friend // // is a GCC extension; see below. // // For the F notation for constrained friends, see // https://github.com/itanium-cxx-abi/cxx-abi/issues/24#issuecomment-1491130332. static bool ParseUnqualifiedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) || ParseSourceName(state) || ParseLocalSourceName(state) || ParseUnnamedTypeName(state)) { return ParseAbiTags(state); } // DC + E ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "DC") && OneOrMore(ParseSourceName, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // F // F if (ParseOneCharToken(state, 'F') && MaybeAppend(state, "friend ") && (ParseSourceName(state) || ParseOperatorName(state, nullptr))) { return true; } state->parse_state = copy; return false; } // ::= [] // ::= B static bool ParseAbiTags(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; while (ParseOneCharToken(state, 'B')) { ParseState copy = state->parse_state; MaybeAppend(state, "[abi:"); if (!ParseSourceName(state)) { state->parse_state = copy; return false; } MaybeAppend(state, "]"); } return true; } // ::= static bool ParseSourceName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; int length = -1; if (ParseNumber(state, &length) && ParseIdentifier(state, static_cast(length))) { return true; } state->parse_state = copy; return false; } // ::= L [] // // References: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775 // https://gcc.gnu.org/viewcvs?view=rev&revision=124467 static bool ParseLocalSourceName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'L') && ParseSourceName(state) && Optional(ParseDiscriminator(state))) { return true; } state->parse_state = copy; return false; } // ::= Ut [<(nonnegative) number>] _ // ::= // ::= Ul E [<(nonnegative) number>] _ // ::= * <(parameter) type>+ // // For * in see: // // https://github.com/itanium-cxx-abi/cxx-abi/issues/31 static bool ParseUnnamedTypeName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }. // Optionally parse the encoded value into 'which' and add 2 to get the index. int which = -1; // Unnamed type local to function or class. if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) && which <= std::numeric_limits::max() - 2 && // Don't overflow. ParseOneCharToken(state, '_')) { MaybeAppend(state, "{unnamed type#"); MaybeAppendDecimal(state, 2 + which); MaybeAppend(state, "}"); return true; } state->parse_state = copy; // Closure type. which = -1; if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) && ZeroOrMore(ParseTemplateParamDecl, state) && OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) && ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) && which <= std::numeric_limits::max() - 2 && // Don't overflow. ParseOneCharToken(state, '_')) { MaybeAppend(state, "{lambda()#"); MaybeAppendDecimal(state, 2 + which); MaybeAppend(state, "}"); return true; } state->parse_state = copy; return false; } // ::= [n] // If "number_out" is non-null, then *number_out is set to the value of the // parsed number on success. static bool ParseNumber(State *state, int *number_out) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; bool negative = false; if (ParseOneCharToken(state, 'n')) { negative = true; } const char *p = RemainingInput(state); uint64_t number = 0; for (; *p != '\0'; ++p) { if (IsDigit(*p)) { number = number * 10 + static_cast(*p - '0'); } else { break; } } // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives // "incorrect" results for out-of-range inputs, but negative values only // appear for literals, which aren't printed. if (negative) { number = ~number + 1; } if (p != RemainingInput(state)) { // Conversion succeeded. state->parse_state.mangled_idx += p - RemainingInput(state); UpdateHighWaterMark(state); if (number_out != nullptr) { // Note: possibly truncate "number". *number_out = static_cast(number); } return true; } return false; } // Floating-point literals are encoded using a fixed-length lowercase // hexadecimal string. static bool ParseFloatNumber(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; const char *p = RemainingInput(state); for (; *p != '\0'; ++p) { if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) { break; } } if (p != RemainingInput(state)) { // Conversion succeeded. state->parse_state.mangled_idx += p - RemainingInput(state); UpdateHighWaterMark(state); return true; } return false; } // The is a sequence number in base 36, // using digits and upper case letters static bool ParseSeqId(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; const char *p = RemainingInput(state); for (; *p != '\0'; ++p) { if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) { break; } } if (p != RemainingInput(state)) { // Conversion succeeded. state->parse_state.mangled_idx += p - RemainingInput(state); UpdateHighWaterMark(state); return true; } return false; } // ::= (of given length) static bool ParseIdentifier(State *state, size_t length) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (!AtLeastNumCharsRemaining(RemainingInput(state), length)) { return false; } if (IdentifierIsAnonymousNamespace(state, length)) { MaybeAppend(state, "(anonymous namespace)"); } else { MaybeAppendWithLength(state, RemainingInput(state), length); } state->parse_state.mangled_idx += length; UpdateHighWaterMark(state); return true; } // ::= nw, and other two letters cases // ::= cv # (cast) // ::= li # C++11 user-defined literal // ::= v # vendor extended operator static bool ParseOperatorName(State *state, int *arity) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) { return false; } // First check with "cv" (cast) case. ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") && EnterNestedName(state) && ParseConversionOperatorType(state) && LeaveNestedName(state, copy.nest_level)) { if (arity != nullptr) { *arity = 1; } return true; } state->parse_state = copy; // Then user-defined literals. if (ParseTwoCharToken(state, "li") && MaybeAppend(state, "operator\"\" ") && ParseSourceName(state)) { return true; } state->parse_state = copy; // Then vendor extended operators. if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) && ParseSourceName(state)) { return true; } state->parse_state = copy; // Other operator names should start with a lower alphabet followed // by a lower/upper alphabet. if (!(IsLower(RemainingInput(state)[0]) && IsAlpha(RemainingInput(state)[1]))) { return false; } // We may want to perform a binary search if we really need speed. const AbbrevPair *p; for (p = kOperatorList; p->abbrev != nullptr; ++p) { if (RemainingInput(state)[0] == p->abbrev[0] && RemainingInput(state)[1] == p->abbrev[1]) { if (arity != nullptr) { *arity = p->arity; } MaybeAppend(state, "operator"); if (IsLower(*p->real_name)) { // new, delete, etc. MaybeAppend(state, " "); } MaybeAppend(state, p->real_name); state->parse_state.mangled_idx += 2; UpdateHighWaterMark(state); return true; } } return false; } // ::= cv # (cast) // // The name of a conversion operator is the one place where cv-qualifiers, *, &, // and other simple type combinators are expected to appear in our stripped-down // demangling (elsewhere they appear in function signatures or template // arguments, which we omit from the output). We make reasonable efforts to // render simple cases accurately. static bool ParseConversionOperatorType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // Scan pointers, const, and other easy mangling prefixes with postfix // demanglings. Remember the range of input for later rescanning. // // See `ParseType` and the `switch` below for the meaning of each char. const char* begin_simple_prefixes = RemainingInput(state); while (ParseCharClass(state, "OPRCGrVK")) {} const char* end_simple_prefixes = RemainingInput(state); // Emit the base type first. if (!ParseType(state)) { state->parse_state = copy; return false; } // Then rescan the easy type combinators in reverse order to emit their // demanglings in the expected output order. while (begin_simple_prefixes != end_simple_prefixes) { switch (*--end_simple_prefixes) { case 'P': MaybeAppend(state, "*"); break; case 'R': MaybeAppend(state, "&"); break; case 'O': MaybeAppend(state, "&&"); break; case 'C': MaybeAppend(state, " _Complex"); break; case 'G': MaybeAppend(state, " _Imaginary"); break; case 'r': MaybeAppend(state, " restrict"); break; case 'V': MaybeAppend(state, " volatile"); break; case 'K': MaybeAppend(state, " const"); break; } } return true; } // ::= TV // ::= TT // ::= TI // ::= TS // ::= TW # thread-local wrapper // ::= TH # thread-local initialization // ::= Tc <(base) encoding> // ::= GV <(object) name> // ::= GR <(object) name> [] _ // ::= T <(base) encoding> // ::= GTt # transaction-safe entry point // ::= TA # nontype template parameter object // G++ extensions: // ::= TC <(offset) number> _ <(base) type> // ::= TF // ::= TJ // ::= GR # without final _, perhaps an earlier form? // ::= GA // ::= Th <(base) encoding> // ::= Tv <(base) encoding> // // Note: Most of these are special data, not functions that occur in stack // traces. Exceptions are TW and TH, which denote functions supporting the // thread_local feature. For these see: // // https://maskray.me/blog/2021-02-14-all-about-thread-local-storage // // For TA see https://github.com/itanium-cxx-abi/cxx-abi/issues/63. static bool ParseSpecialName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "TW")) { MaybeAppend(state, "thread-local wrapper routine for "); if (ParseName(state)) return true; state->parse_state = copy; return false; } if (ParseTwoCharToken(state, "TH")) { MaybeAppend(state, "thread-local initialization routine for "); if (ParseName(state)) return true; state->parse_state = copy; return false; } if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") && ParseType(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) && ParseCallOffset(state) && ParseEncoding(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "GV") && ParseName(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) && ParseEncoding(state)) { return true; } state->parse_state = copy; // G++ extensions if (ParseTwoCharToken(state, "TC") && ParseType(state) && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && DisableAppend(state) && ParseType(state)) { RestoreAppend(state, copy.append); return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") && ParseType(state)) { return true; } state->parse_state = copy; // ::= GR <(object) name> [] _ # modern standard // ::= GR <(object) name> # also recognized if (ParseTwoCharToken(state, "GR")) { MaybeAppend(state, "reference temporary for "); if (!ParseName(state)) { state->parse_state = copy; return false; } const bool has_seq_id = ParseSeqId(state); const bool has_underscore = ParseOneCharToken(state, '_'); if (has_seq_id && !has_underscore) { state->parse_state = copy; return false; } return true; } if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) { return true; } state->parse_state = copy; if (ParseThreeCharToken(state, "GTt") && MaybeAppend(state, "transaction clone for ") && ParseEncoding(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") && ParseCallOffset(state) && ParseEncoding(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "TA")) { bool append = state->parse_state.append; DisableAppend(state); if (ParseTemplateArg(state)) { RestoreAppend(state, append); MaybeAppend(state, "template parameter object"); return true; } } state->parse_state = copy; return false; } // ::= h _ // ::= v _ static bool ParseCallOffset(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'v') && ParseVOffset(state) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; return false; } // ::= <(offset) number> static bool ParseNVOffset(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return ParseNumber(state, nullptr); } // ::= <(offset) number> _ <(virtual offset) number> static bool ParseVOffset(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) { return true; } state->parse_state = copy; return false; } // ::= C1 | C2 | C3 | CI1 | CI2 // // ::= D0 | D1 | D2 // # GCC extensions: "unified" constructor/destructor. See // # // https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847 // ::= C4 | D4 static bool ParseCtorDtorName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'C')) { if (ParseCharClass(state, "1234")) { const char *const prev_name = state->out + state->parse_state.prev_name_idx; MaybeAppendWithLength(state, prev_name, state->parse_state.prev_name_length); return true; } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") && ParseClassEnumType(state)) { return true; } } state->parse_state = copy; if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) { const char *const prev_name = state->out + state->parse_state.prev_name_idx; MaybeAppend(state, "~"); MaybeAppendWithLength(state, prev_name, state->parse_state.prev_name_length); return true; } state->parse_state = copy; return false; } // ::= Dt E # decltype of an id-expression or class // # member access (C++0x) // ::= DT E # decltype of an expression (C++0x) static bool ParseDecltype(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") && ParseExpression(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= // ::= P # pointer-to // ::= R # reference-to // ::= O # rvalue reference-to (C++0x) // ::= C # complex pair (C 2000) // ::= G # imaginary (C 2000) // ::= // ::= // ::= # note: just an alias for // ::= // ::= // ::= // ::= // ::= // ::= // ::= Dp # pack expansion of (C++0x) // ::= Dv <(elements) number> _ # GNU vector extension // ::= Dv <(bytes) expression> _ // ::= Dk # constrained auto // static bool ParseType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // We should check CV-qualifers, and PRGC things first. // // CV-qualifiers overlap with some operator names, but an operator name is not // valid as a type. To avoid an ambiguity that can lead to exponential time // complexity, refuse to backtrack the CV-qualifiers. // // _Z4aoeuIrMvvE // => _Z 4aoeuI rM v v E // aoeu // => _Z 4aoeuI r Mv v E // aoeu // // By consuming the CV-qualifiers first, the former parse is disabled. if (ParseCVQualifiers(state)) { const bool result = ParseType(state); if (!result) state->parse_state = copy; return result; } state->parse_state = copy; // Similarly, these tag characters can overlap with other s resulting in // two different parse prefixes that land on in the same // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by // refusing to backtrack the tag characters. if (ParseCharClass(state, "OPRCG")) { const bool result = ParseType(state); if (!result) state->parse_state = copy; return result; } state->parse_state = copy; if (ParseTwoCharToken(state, "Dp") && ParseType(state)) { return true; } state->parse_state = copy; if (ParseBuiltinType(state) || ParseFunctionType(state) || ParseClassEnumType(state) || ParseArrayType(state) || ParsePointerToMemberType(state) || ParseDecltype(state) || // "std" on its own isn't a type. ParseSubstitution(state, /*accept_std=*/false)) { return true; } if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) { return true; } state->parse_state = copy; // Less greedy than . if (ParseTemplateParam(state)) { return true; } // GNU vector extension Dv _ if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } state->parse_state = copy; // GNU vector extension Dv _ if (ParseTwoCharToken(state, "Dv") && ParseExpression(state) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Dk") && ParseTypeConstraint(state)) { return true; } state->parse_state = copy; // For this notation see CXXNameMangler::mangleType in Clang's source code. // The relevant logic and its comment "not clear how to mangle this!" date // from 2011, so it may be with us awhile. return ParseLongToken(state, "_SUBSTPACK_"); } // ::= * // ::= [r] [V] [K] // // We don't allow empty to avoid infinite loop in // ParseType(). static bool ParseCVQualifiers(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; int num_cv_qualifiers = 0; while (ParseExtendedQualifier(state)) ++num_cv_qualifiers; num_cv_qualifiers += ParseOneCharToken(state, 'r'); num_cv_qualifiers += ParseOneCharToken(state, 'V'); num_cv_qualifiers += ParseOneCharToken(state, 'K'); return num_cv_qualifiers > 0; } // ::= U [] static bool ParseExtendedQualifier(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (!ParseOneCharToken(state, 'U')) return false; bool append = state->parse_state.append; DisableAppend(state); if (!ParseSourceName(state)) { state->parse_state = copy; return false; } Optional(ParseTemplateArgs(state)); RestoreAppend(state, append); return true; } // ::= v, etc. # single-character builtin types // ::= // ::= Dd, etc. # two-character builtin types // ::= DB ( | ) _ # _BitInt(N) // ::= DU ( | ) _ # unsigned _BitInt(N) // ::= DF _ # _FloatN (N bits) // ::= DF x # _FloatNx // ::= DF16b # std::bfloat16_t // // Not supported: // ::= [DS] DA // ::= [DS] DR // because real implementations of N1169 fixed-point are scant. static bool ParseBuiltinType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // DB ( | ) _ # _BitInt(N) // DU ( | ) _ # unsigned _BitInt(N) if (ParseTwoCharToken(state, "DB") || (ParseTwoCharToken(state, "DU") && MaybeAppend(state, "unsigned "))) { bool append = state->parse_state.append; DisableAppend(state); int number = -1; if (!ParseNumber(state, &number) && !ParseExpression(state)) { state->parse_state = copy; return false; } RestoreAppend(state, append); if (!ParseOneCharToken(state, '_')) { state->parse_state = copy; return false; } MaybeAppend(state, "_BitInt("); if (number >= 0) { MaybeAppendDecimal(state, number); } else { MaybeAppend(state, "?"); // the best we can do for dependent sizes } MaybeAppend(state, ")"); return true; } // DF _ # _FloatN // DF x # _FloatNx // DF16b # std::bfloat16_t if (ParseTwoCharToken(state, "DF")) { if (ParseThreeCharToken(state, "16b")) { MaybeAppend(state, "std::bfloat16_t"); return true; } int number = 0; if (!ParseNumber(state, &number)) { state->parse_state = copy; return false; } MaybeAppend(state, "_Float"); MaybeAppendDecimal(state, number); if (ParseOneCharToken(state, 'x')) { MaybeAppend(state, "x"); return true; } if (ParseOneCharToken(state, '_')) return true; state->parse_state = copy; return false; } for (const AbbrevPair *p = kBuiltinTypeList; p->abbrev != nullptr; ++p) { // Guaranteed only 1- or 2-character strings in kBuiltinTypeList. if (p->abbrev[1] == '\0') { if (ParseOneCharToken(state, p->abbrev[0])) { MaybeAppend(state, p->real_name); return true; // ::= v, etc. # single-character builtin types } } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) { MaybeAppend(state, p->real_name); return true; // ::= Dd, etc. # two-character builtin types } } return ParseVendorExtendedType(state); } // ::= u [] static bool ParseVendorExtendedType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'u') && ParseSourceName(state) && Optional(ParseTemplateArgs(state))) { return true; } state->parse_state = copy; return false; } // ::= Do # non-throwing // exception-specification (e.g., // noexcept, throw()) // ::= DO E # computed (instantiation-dependent) // noexcept // ::= Dw + E # dynamic exception specification // with instantiation-dependent types static bool ParseExceptionSpec(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTwoCharToken(state, "Do")) return true; ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "DO") && ParseExpression(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= // [exception-spec] [Dx] F [Y] [] E // // ::= R | O static bool ParseFunctionType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; Optional(ParseExceptionSpec(state)); Optional(ParseTwoCharToken(state, "Dx")); if (!ParseOneCharToken(state, 'F')) { state->parse_state = copy; return false; } Optional(ParseOneCharToken(state, 'Y')); if (!ParseBareFunctionType(state)) { state->parse_state = copy; return false; } Optional(ParseCharClass(state, "RO")); if (!ParseOneCharToken(state, 'E')) { state->parse_state = copy; return false; } return true; } // ::= * <(signature) type>+ // // The * prefix is nonstandard; see the comment on // ParseOverloadAttribute. static bool ParseBareFunctionType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; DisableAppend(state); if (ZeroOrMore(ParseOverloadAttribute, state) && OneOrMore(ParseType, state)) { RestoreAppend(state, copy.append); MaybeAppend(state, "()"); return true; } state->parse_state = copy; return false; } // ::= Ua // // The nonstandard production is sufficient to accept the // current implementation of __attribute__((enable_if(condition, "message"))) // and future attributes of a similar shape. See // https://clang.llvm.org/docs/AttributeReference.html#enable-if and the // definition of CXXNameMangler::mangleFunctionEncodingBareType in Clang's // source code. static bool ParseOverloadAttribute(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "Ua") && ParseName(state)) { return true; } state->parse_state = copy; return false; } // ::= // ::= Ts # struct Name or class Name // ::= Tu # union Name // ::= Te # enum Name // // See http://shortn/_W3YrltiEd0. static bool ParseClassEnumType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (Optional(ParseTwoCharToken(state, "Ts") || ParseTwoCharToken(state, "Tu") || ParseTwoCharToken(state, "Te")) && ParseName(state)) { return true; } state->parse_state = copy; return false; } // ::= A <(positive dimension) number> _ <(element) type> // ::= A [<(dimension) expression>] _ <(element) type> static bool ParseArrayType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) && ParseOneCharToken(state, '_') && ParseType(state)) { return true; } state->parse_state = copy; return false; } // ::= M <(class) type> <(member) type> static bool ParsePointerToMemberType(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) { return true; } state->parse_state = copy; return false; } // ::= T_ // ::= T _ // ::= TL __ // ::= TL _ _ static bool ParseTemplateParam(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTwoCharToken(state, "T_")) { MaybeAppend(state, "?"); // We don't support template substitutions. return true; // ::= T_ } ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); // We don't support template substitutions. return true; // ::= T _ } state->parse_state = copy; if (ParseTwoCharToken(state, "TL") && ParseNumber(state, nullptr)) { if (ParseTwoCharToken(state, "__")) { MaybeAppend(state, "?"); // We don't support template substitutions. return true; // ::= TL __ } if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); // We don't support template substitutions. return true; // ::= TL _ _ } } state->parse_state = copy; return false; } // // ::= Ty # template type parameter // ::= Tk [] # constrained type parameter // ::= Tn # template non-type parameter // ::= Tt * E # template template parameter // ::= Tp # template parameter pack // // NOTE: is just a : http://shortn/_MqJVyr0fc1 // TODO(b/324066279): Implement optional suffix for `Tt`: // [Q ] static bool ParseTemplateParamDecl(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "Ty")) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Tk") && ParseName(state) && Optional(ParseTemplateArgs(state))) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Tn") && ParseType(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Tt") && ZeroOrMore(ParseTemplateParamDecl, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "Tp") && ParseTemplateParamDecl(state)) { return true; } state->parse_state = copy; return false; } // ::= // ::= static bool ParseTemplateTemplateParam(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; return (ParseTemplateParam(state) || // "std" on its own isn't a template. ParseSubstitution(state, /*accept_std=*/false)); } // ::= I + [Q ] E static bool ParseTemplateArgs(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; DisableAppend(state); if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) && Optional(ParseQRequiresClauseExpr(state)) && ParseOneCharToken(state, 'E')) { RestoreAppend(state, copy.append); MaybeAppend(state, "<>"); return true; } state->parse_state = copy; return false; } // ::= // ::= // ::= // ::= J * E # argument pack // ::= X E static bool ParseTemplateArg(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // There can be significant overlap between the following leading to // exponential backtracking: // // ::= L E // e.g. L 2xxIvE 1 E // ==> // e.g. L 2xx IvE // // This means parsing an entire twice, and can contain // , so this can generate exponential backtracking. There is // only overlap when the remaining input starts with "L ", so // parse all cases that can start this way jointly to share the common prefix. // // We have: // // ::= // ::= // // First, drop all the productions of that must start with something // other than 'L'. All that's left is ; inline it. // // ::= # starts with 'N' // ::= // ::= // ::= # starts with 'Z' // // Drop and inline again: // // ::= // ::= // ::= # starts with 'S' // // Merge the first two, inline , drop last: // // ::= [] // ::= St [] # starts with 'S' // // Drop and inline: // // ::= [] # starts with lowercase // ::= [] # starts with 'C' or 'D' // ::= [] # starts with digit // ::= [] // ::= [] # starts with 'U' // // One more time: // // ::= L [] // // Likewise with : // // ::= L E // ::= LZ E # cannot overlap; drop // ::= L E # cannot overlap; drop // // By similar reasoning as shown above, the only s starting with // are " []". Inline this. // // ::= L [] E // // Now inline both of these into : // // ::= L [] // ::= L [] E // // Merge them and we're done: // // ::= L [] [ E] if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) { copy = state->parse_state; if (ParseExprCastValueAndTrailingE(state)) { return true; } state->parse_state = copy; return true; } // Now that the overlapping cases can't reach this code, we can safely call // both of these. if (ParseType(state) || ParseExprPrimary(state)) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'X') && ParseExpression(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; if (ParseTemplateParamDecl(state) && ParseTemplateArg(state)) { return true; } state->parse_state = copy; return false; } // ::= [] // ::= // ::= static inline bool ParseUnresolvedType(State *state) { // No ComplexityGuard because we don't copy the state in this stack frame. return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) || ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false); } // ::= [] static inline bool ParseSimpleId(State *state) { // No ComplexityGuard because we don't copy the state in this stack frame. // Note: cannot be followed by a parameter pack; see comment in // ParseUnresolvedType. return ParseSourceName(state) && Optional(ParseTemplateArgs(state)); } // ::= [] // ::= on [] // ::= dn static bool ParseBaseUnresolvedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseSimpleId(state)) { return true; } ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) && Optional(ParseTemplateArgs(state))) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "dn") && (ParseUnresolvedType(state) || ParseSimpleId(state))) { return true; } state->parse_state = copy; return false; } // ::= [gs] // ::= sr // ::= srN + E // // ::= [gs] sr + E // // ::= sr St # nonstandard // // The last case is not part of the official grammar but has been observed in // real-world examples that the GNU demangler (but not the LLVM demangler) is // able to decode; see demangle_test.cc for one such symbol name. The shape // sr St was inferred by closed-box testing of the GNU // demangler. static bool ParseUnresolvedName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (Optional(ParseTwoCharToken(state, "gs")) && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') && ParseUnresolvedType(state) && OneOrMore(ParseUnresolvedQualifierLevel, state) && ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (Optional(ParseTwoCharToken(state, "gs")) && ParseTwoCharToken(state, "sr") && OneOrMore(ParseUnresolvedQualifierLevel, state) && ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "sr") && ParseTwoCharToken(state, "St") && ParseSimpleId(state) && ParseSimpleId(state)) { return true; } state->parse_state = copy; return false; } // ::= // ::= // // The production is nonstandard but is observed // in practice. An upstream discussion on the best shape of // has not converged: // // https://github.com/itanium-cxx-abi/cxx-abi/issues/38 static bool ParseUnresolvedQualifierLevel(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseSimpleId(state)) return true; ParseState copy = state->parse_state; if (ParseSubstitution(state, /*accept_std=*/false) && ParseTemplateArgs(state)) { return true; } state->parse_state = copy; return false; } // ::= _ [] // // https://github.com/itanium-cxx-abi/cxx-abi/issues/47 static bool ParseUnionSelector(State *state) { return ParseOneCharToken(state, '_') && Optional(ParseNumber(state, nullptr)); } // ::= fp <(top-level) CV-qualifiers> _ // ::= fp <(top-level) CV-qualifiers> _ // ::= fL p <(top-level) CV-qualifiers> _ // ::= fL p <(top-level) CV-qualifiers> _ // ::= fpT # this static bool ParseFunctionParam(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // Function-param expression (level 0). if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) && Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; // Function-param expression (level 1+). if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) && Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; return ParseThreeCharToken(state, "fpT"); } // ::= // ::= di // ::= dx // ::= dX static bool ParseBracedExpression(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "di") && ParseSourceName(state) && ParseBracedExpression(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "dx") && ParseExpression(state) && ParseBracedExpression(state)) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "dX") && ParseExpression(state) && ParseExpression(state) && ParseBracedExpression(state)) { return true; } state->parse_state = copy; return ParseExpression(state); } // ::= <1-ary operator-name> // ::= <2-ary operator-name> // ::= <3-ary operator-name> // ::= pp_ # ++e; pp is e++ // ::= mm_ # --e; mm is e-- // ::= cl + E // ::= cp * E # Clang-specific. // ::= so [] * [p] E // ::= cv # type (expression) // ::= cv _ * E # type (expr-list) // ::= tl * E // ::= il * E // ::= [gs] nw * _ E // ::= [gs] nw * _ // ::= [gs] na * _ E // ::= [gs] na * _ // ::= [gs] dl // ::= [gs] da // ::= dc // ::= sc // ::= cc // ::= rc // ::= ti // ::= te // ::= st // ::= at // ::= az // ::= nx // ::= // ::= // ::= sZ // ::= sZ // ::= sP * E // ::= // ::= dt # expr.name // ::= pt # expr->name // ::= sp # argument pack expansion // ::= fl // ::= fr // ::= fL // ::= fR // ::= tw // ::= tr // ::= sr // ::= sr // ::= u * E # vendor extension // ::= rq + E // ::= rQ _ + E static bool ParseExpression(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTemplateParam(state) || ParseExprPrimary(state)) { return true; } ParseState copy = state->parse_state; // Object/function call expression. if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // Preincrement and predecrement. Postincrement and postdecrement are handled // by the operator-name logic later on. if ((ParseThreeCharToken(state, "pp_") || ParseThreeCharToken(state, "mm_")) && ParseExpression(state)) { return true; } state->parse_state = copy; // Clang-specific "cp * E" // https://clang.llvm.org/doxygen/ItaniumMangle_8cpp_source.html#l04338 if (ParseTwoCharToken(state, "cp") && ParseSimpleId(state) && ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // ::= so [] * [p] E // // https://github.com/itanium-cxx-abi/cxx-abi/issues/47 if (ParseTwoCharToken(state, "so") && ParseType(state) && ParseExpression(state) && Optional(ParseNumber(state, nullptr)) && ZeroOrMore(ParseUnionSelector, state) && Optional(ParseOneCharToken(state, 'p')) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // ::= if (ParseFunctionParam(state)) return true; state->parse_state = copy; // ::= tl * E if (ParseTwoCharToken(state, "tl") && ParseType(state) && ZeroOrMore(ParseBracedExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // ::= il * E if (ParseTwoCharToken(state, "il") && ZeroOrMore(ParseBracedExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // ::= [gs] nw * _ E // ::= [gs] nw * _ // ::= [gs] na * _ E // ::= [gs] na * _ if (Optional(ParseTwoCharToken(state, "gs")) && (ParseTwoCharToken(state, "nw") || ParseTwoCharToken(state, "na")) && ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, '_') && ParseType(state) && (ParseOneCharToken(state, 'E') || ParseInitializer(state))) { return true; } state->parse_state = copy; // ::= [gs] dl // ::= [gs] da if (Optional(ParseTwoCharToken(state, "gs")) && (ParseTwoCharToken(state, "dl") || ParseTwoCharToken(state, "da")) && ParseExpression(state)) { return true; } state->parse_state = copy; // dynamic_cast, static_cast, const_cast, reinterpret_cast. // // ::= (dc | sc | cc | rc) if (ParseCharClass(state, "dscr") && ParseOneCharToken(state, 'c') && ParseType(state) && ParseExpression(state)) { return true; } state->parse_state = copy; // Parse the conversion expressions jointly to avoid re-parsing the in // their common prefix. Parsed as: // ::= cv // ::= _ * E // ::= // // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName // also needs to accept "cv " in other contexts. if (ParseTwoCharToken(state, "cv")) { if (ParseType(state)) { ParseState copy2 = state->parse_state; if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy2; if (ParseExpression(state)) { return true; } } } else { // Parse unary, binary, and ternary operator expressions jointly, taking // care not to re-parse subexpressions repeatedly. Parse like: // ::= // [] // ::= [] int arity = -1; if (ParseOperatorName(state, &arity) && arity > 0 && // 0 arity => disabled. (arity < 3 || ParseExpression(state)) && (arity < 2 || ParseExpression(state)) && (arity < 1 || ParseExpression(state))) { return true; } } state->parse_state = copy; // typeid(type) if (ParseTwoCharToken(state, "ti") && ParseType(state)) { return true; } state->parse_state = copy; // typeid(expression) if (ParseTwoCharToken(state, "te") && ParseExpression(state)) { return true; } state->parse_state = copy; // sizeof type if (ParseTwoCharToken(state, "st") && ParseType(state)) { return true; } state->parse_state = copy; // alignof(type) if (ParseTwoCharToken(state, "at") && ParseType(state)) { return true; } state->parse_state = copy; // alignof(expression), a GNU extension if (ParseTwoCharToken(state, "az") && ParseExpression(state)) { return true; } state->parse_state = copy; // noexcept(expression) appearing as an expression in a dependent signature if (ParseTwoCharToken(state, "nx") && ParseExpression(state)) { return true; } state->parse_state = copy; // sizeof...(pack) // // ::= sZ // ::= sZ if (ParseTwoCharToken(state, "sZ") && (ParseFunctionParam(state) || ParseTemplateParam(state))) { return true; } state->parse_state = copy; // sizeof...(pack) captured from an alias template // // ::= sP * E if (ParseTwoCharToken(state, "sP") && ZeroOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // Unary folds (... op pack) and (pack op ...). // // ::= fl // ::= fr if ((ParseTwoCharToken(state, "fl") || ParseTwoCharToken(state, "fr")) && ParseOperatorName(state, nullptr) && ParseExpression(state)) { return true; } state->parse_state = copy; // Binary folds (init op ... op pack) and (pack op ... op init). // // ::= fL // ::= fR if ((ParseTwoCharToken(state, "fL") || ParseTwoCharToken(state, "fR")) && ParseOperatorName(state, nullptr) && ParseExpression(state) && ParseExpression(state)) { return true; } state->parse_state = copy; // tw : throw e if (ParseTwoCharToken(state, "tw") && ParseExpression(state)) { return true; } state->parse_state = copy; // tr: throw (rethrows an exception from the handler that caught it) if (ParseTwoCharToken(state, "tr")) return true; // Object and pointer member access expressions. // // ::= (dt | pt) if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) && ParseExpression(state) && ParseUnresolvedName(state)) { return true; } state->parse_state = copy; // Pointer-to-member access expressions. This parses the same as a binary // operator, but it's implemented separately because "ds" shouldn't be // accepted in other contexts that parse an operator name. if (ParseTwoCharToken(state, "ds") && ParseExpression(state) && ParseExpression(state)) { return true; } state->parse_state = copy; // Parameter pack expansion if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) { return true; } state->parse_state = copy; // Vendor extended expressions if (ParseOneCharToken(state, 'u') && ParseSourceName(state) && ZeroOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // ::= rq + E // // https://github.com/itanium-cxx-abi/cxx-abi/issues/24 if (ParseTwoCharToken(state, "rq") && OneOrMore(ParseRequirement, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; // ::= rQ _ + E // // https://github.com/itanium-cxx-abi/cxx-abi/issues/24 if (ParseTwoCharToken(state, "rQ") && ParseBareFunctionType(state) && ParseOneCharToken(state, '_') && OneOrMore(ParseRequirement, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return ParseUnresolvedName(state); } // ::= pi * E // ::= il * E // // The il ... E form is not in the ABI spec but is seen in practice for // braced-init-lists in new-expressions, which are standard syntax from C++11 // on. static bool ParseInitializer(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseTwoCharToken(state, "pi") && ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; if (ParseTwoCharToken(state, "il") && ZeroOrMore(ParseBracedExpression, state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // ::= L <(value) number> E // ::= L <(value) float> E // ::= L E // // A bug in g++'s C++ ABI version 2 (-fabi-version=2). // ::= LZ E // // Warning, subtle: the "bug" LZ production above is ambiguous with the first // production where starts with , which can lead to // exponential backtracking in two scenarios: // // - When whatever follows the E in the in the first production is // not a name, we backtrack the whole and re-parse the whole thing. // // - When whatever follows the in the first production is not a // number and this may be followed by a name, we backtrack the // and re-parse it. // // Moreover this ambiguity isn't always resolved -- for example, the following // has two different parses: // // _ZaaILZ4aoeuE1x1EvE // => operator&& // => operator&&<(aoeu::x)(1), void> // // To resolve this, we just do what GCC's demangler does, and refuse to parse // casts to types. static bool ParseExprPrimary(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // The "LZ" special case: if we see LZ, we commit to accept "LZ E" // or fail, no backtracking. if (ParseTwoCharToken(state, "LZ")) { if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } if (ParseOneCharToken(state, 'L')) { // There are two special cases in which a literal may or must contain a type // without a value. The first is that both LDnE and LDn0E are valid // encodings of nullptr, used in different situations. Recognize LDnE here, // leaving LDn0E to be recognized by the general logic afterward. if (ParseThreeCharToken(state, "DnE")) return true; // The second special case is a string literal, currently mangled in C++98 // style as LA_KcE. This is inadequate to support C++11 and // later versions, and the discussion of this problem has not converged. // // https://github.com/itanium-cxx-abi/cxx-abi/issues/64 // // For now the bare-type mangling is what's used in practice, so we // recognize this form and only this form if an array type appears here. // Someday we'll probably have to accept a new form of value mangling in // LA...E constructs. (Note also that C++20 allows a wide range of // class-type objects as template arguments, so someday their values will be // mangled and we'll have to recognize them here too.) if (RemainingInput(state)[0] == 'A' /* an array type follows */) { if (ParseType(state) && ParseOneCharToken(state, 'E')) return true; state->parse_state = copy; return false; } // The merged cast production. if (ParseType(state) && ParseExprCastValueAndTrailingE(state)) { return true; } } state->parse_state = copy; if (ParseOneCharToken(state, 'L') && ParseMangledName(state) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; return false; } // or , followed by 'E', as described above ParseExprPrimary. static bool ParseExprCastValueAndTrailingE(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; // We have to be able to backtrack after accepting a number because we could // have e.g. "7fffE", which will accept "7" as a number but then fail to find // the 'E'. ParseState copy = state->parse_state; if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) { return true; } state->parse_state = copy; if (ParseFloatNumber(state)) { // for ordinary floating-point types if (ParseOneCharToken(state, 'E')) return true; // _ for complex floating-point types if (ParseOneCharToken(state, '_') && ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) { return true; } } state->parse_state = copy; return false; } // Parses `Q `. // If parsing fails, applies backtracking to `state`. // // This function covers two symbols instead of one for convenience, // because in LLVM's Itanium ABI mangling grammar, // always appears after Q. // // Does not emit the parsed `requires` clause to simplify the implementation. // In other words, these two functions' mangled names will demangle identically: // // template // int foo(T) requires IsIntegral; // // vs. // // template // int foo(T); static bool ParseQRequiresClauseExpr(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; DisableAppend(state); // is just an : http://shortn/_9E1Ul0rIM8 if (ParseOneCharToken(state, 'Q') && ParseExpression(state)) { RestoreAppend(state, copy.append); return true; } // also restores append state->parse_state = copy; return false; } // ::= X [N] [R ] // ::= T // ::= Q // // ::= // // https://github.com/itanium-cxx-abi/cxx-abi/issues/24 static bool ParseRequirement(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'X') && ParseExpression(state) && Optional(ParseOneCharToken(state, 'N')) && // This logic backtracks cleanly if we eat an R but a valid type doesn't // follow it. (!ParseOneCharToken(state, 'R') || ParseTypeConstraint(state))) { return true; } state->parse_state = copy; if (ParseOneCharToken(state, 'T') && ParseType(state)) return true; state->parse_state = copy; if (ParseOneCharToken(state, 'Q') && ParseExpression(state)) return true; state->parse_state = copy; return false; } // ::= static bool ParseTypeConstraint(State *state) { return ParseName(state); } // ::= Z <(function) encoding> E <(entity) name> [] // ::= Z <(function) encoding> E s [] // ::= Z <(function) encoding> E d [<(parameter) number>] _ // // Parsing a common prefix of these two productions together avoids an // exponential blowup of backtracking. Parse like: // := Z E // ::= s [] // ::= d [<(parameter) number>] _ // ::= [] static bool ParseLocalNameSuffix(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // ::= d [<(parameter) number>] _ if (ParseOneCharToken(state, 'd') && (IsDigit(RemainingInput(state)[0]) || RemainingInput(state)[0] == '_')) { int number = -1; Optional(ParseNumber(state, &number)); if (number < -1 || number > 2147483645) { // Work around overflow cases. We do not expect these outside of a fuzzer // or other source of adversarial input. If we do detect overflow here, // we'll print {default arg#1}. number = -1; } number += 2; // The ::{default arg#1}:: infix must be rendered before the lambda itself, // so print this before parsing the rest of the . MaybeAppend(state, "::{default arg#"); MaybeAppendDecimal(state, number); MaybeAppend(state, "}::"); if (ParseOneCharToken(state, '_') && ParseName(state)) return true; // On late parse failure, roll back not only the input but also the output, // whose trailing NUL was overwritten. state->parse_state = copy; if (state->parse_state.append) { state->out[state->parse_state.out_cur_idx] = '\0'; } return false; } state->parse_state = copy; // ::= [] if (MaybeAppend(state, "::") && ParseName(state) && Optional(ParseDiscriminator(state))) { return true; } state->parse_state = copy; if (state->parse_state.append) { state->out[state->parse_state.out_cur_idx] = '\0'; } // ::= s [] return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state)); } static bool ParseLocalName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) && ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) { return true; } state->parse_state = copy; return false; } // := _ // := __ = 10)> _ static bool ParseDiscriminator(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; ParseState copy = state->parse_state; // Both forms start with _ so parse that first. if (!ParseOneCharToken(state, '_')) return false; // if (ParseDigit(state, nullptr)) return true; // _ _ if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr) && ParseOneCharToken(state, '_')) { return true; } state->parse_state = copy; return false; } // ::= S_ // ::= S _ // ::= St, etc. // // "St" is special in that it's not valid as a standalone name, and it *is* // allowed to precede a name without being wrapped in "N...E". This means that // if we accept it on its own, we can accept "St1a" and try to parse // template-args, then fail and backtrack, accept "St" on its own, then "1a" as // an unqualified name and re-parse the same template-args. To block this // exponential backtracking, we disable it with 'accept_std=false' in // problematic contexts. static bool ParseSubstitution(State *state, bool accept_std) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseTwoCharToken(state, "S_")) { MaybeAppend(state, "?"); // We don't support substitutions. return true; } ParseState copy = state->parse_state; if (ParseOneCharToken(state, 'S') && ParseSeqId(state) && ParseOneCharToken(state, '_')) { MaybeAppend(state, "?"); // We don't support substitutions. return true; } state->parse_state = copy; // Expand abbreviations like "St" => "std". if (ParseOneCharToken(state, 'S')) { const AbbrevPair *p; for (p = kSubstitutionList; p->abbrev != nullptr; ++p) { if (RemainingInput(state)[0] == p->abbrev[1] && (accept_std || p->abbrev[1] != 't')) { MaybeAppend(state, "std"); if (p->real_name[0] != '\0') { MaybeAppend(state, "::"); MaybeAppend(state, p->real_name); } ++state->parse_state.mangled_idx; UpdateHighWaterMark(state); return true; } } } state->parse_state = copy; return false; } // Parse , optionally followed by either a function-clone suffix // or version suffix. Returns true only if all of "mangled_cur" was consumed. static bool ParseTopLevelMangledName(State *state) { ComplexityGuard guard(state); if (guard.IsTooComplex()) return false; if (ParseMangledName(state)) { if (RemainingInput(state)[0] != '\0') { // Drop trailing function clone suffix, if any. if (IsFunctionCloneSuffix(RemainingInput(state))) { return true; } // Append trailing version suffix if any. // ex. _Z3foo@@GLIBCXX_3.4 if (RemainingInput(state)[0] == '@') { MaybeAppend(state, RemainingInput(state)); return true; } ReportHighWaterMark(state); return false; // Unconsumed suffix. } return true; } ReportHighWaterMark(state); return false; } static bool Overflowed(const State *state) { return state->parse_state.out_cur_idx >= state->out_end_idx; } // The demangler entry point. bool Demangle(const char* mangled, char* out, size_t out_size) { if (mangled[0] == '_' && mangled[1] == 'R') { return DemangleRustSymbolEncoding(mangled, out, out_size); } State state; InitState(&state, mangled, out, out_size); return ParseTopLevelMangledName(&state) && !Overflowed(&state) && state.parse_state.out_cur_idx > 0; } std::string DemangleString(const char* mangled) { std::string out; int status = 0; char* demangled = nullptr; #if ABSL_INTERNAL_HAS_CXA_DEMANGLE demangled = abi::__cxa_demangle(mangled, nullptr, nullptr, &status); #endif if (status == 0 && demangled != nullptr) { out.append(demangled); free(demangled); } else { out.append(mangled); } return out; } } // namespace debugging_internal ABSL_NAMESPACE_END } // namespace absl