// // Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_FLAGS_INTERNAL_FLAG_H_ #define ABSL_FLAGS_INTERNAL_FLAG_H_ #include #include #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/call_once.h" #include "absl/base/casts.h" #include "absl/base/config.h" #include "absl/base/optimization.h" #include "absl/base/thread_annotations.h" #include "absl/flags/commandlineflag.h" #include "absl/flags/config.h" #include "absl/flags/internal/commandlineflag.h" #include "absl/flags/internal/registry.h" #include "absl/flags/internal/sequence_lock.h" #include "absl/flags/marshalling.h" #include "absl/meta/type_traits.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/utility/utility.h" namespace absl { ABSL_NAMESPACE_BEGIN /////////////////////////////////////////////////////////////////////////////// // Forward declaration of absl::Flag public API. namespace flags_internal { template class Flag; } // namespace flags_internal template using Flag = flags_internal::Flag; template ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag& flag); template void SetFlag(absl::Flag* flag, const T& v); template void SetFlag(absl::Flag* flag, const V& v); template const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag& f); /////////////////////////////////////////////////////////////////////////////// // Flag value type operations, eg., parsing, copying, etc. are provided // by function specific to that type with a signature matching FlagOpFn. namespace flags_internal { enum class FlagOp { kAlloc, kDelete, kCopy, kCopyConstruct, kSizeof, kFastTypeId, kRuntimeTypeId, kParse, kUnparse, kValueOffset, }; using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*); // Forward declaration for Flag value specific operations. template void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3); // Allocate aligned memory for a flag value. inline void* Alloc(FlagOpFn op) { return op(FlagOp::kAlloc, nullptr, nullptr, nullptr); } // Deletes memory interpreting obj as flag value type pointer. inline void Delete(FlagOpFn op, void* obj) { op(FlagOp::kDelete, nullptr, obj, nullptr); } // Copies src to dst interpreting as flag value type pointers. inline void Copy(FlagOpFn op, const void* src, void* dst) { op(FlagOp::kCopy, src, dst, nullptr); } // Construct a copy of flag value in a location pointed by dst // based on src - pointer to the flag's value. inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) { op(FlagOp::kCopyConstruct, src, dst, nullptr); } // Makes a copy of flag value pointed by obj. inline void* Clone(FlagOpFn op, const void* obj) { void* res = flags_internal::Alloc(op); flags_internal::CopyConstruct(op, obj, res); return res; } // Returns true if parsing of input text is successful. inline bool Parse(FlagOpFn op, absl::string_view text, void* dst, std::string* error) { return op(FlagOp::kParse, &text, dst, error) != nullptr; } // Returns string representing supplied value. inline std::string Unparse(FlagOpFn op, const void* val) { std::string result; op(FlagOp::kUnparse, val, &result, nullptr); return result; } // Returns size of flag value type. inline size_t Sizeof(FlagOpFn op) { // This sequence of casts reverses the sequence from // `flags_internal::FlagOps()` return static_cast(reinterpret_cast( op(FlagOp::kSizeof, nullptr, nullptr, nullptr))); } // Returns fast type id corresponding to the value type. inline FlagFastTypeId FastTypeId(FlagOpFn op) { return reinterpret_cast( op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr)); } // Returns fast type id corresponding to the value type. inline const std::type_info* RuntimeTypeId(FlagOpFn op) { return reinterpret_cast( op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr)); } // Returns offset of the field value_ from the field impl_ inside of // absl::Flag data. Given FlagImpl pointer p you can get the // location of the corresponding value as: // reinterpret_cast(p) + ValueOffset(). inline ptrdiff_t ValueOffset(FlagOpFn op) { // This sequence of casts reverses the sequence from // `flags_internal::FlagOps()` return static_cast(reinterpret_cast( op(FlagOp::kValueOffset, nullptr, nullptr, nullptr))); } // Returns an address of RTTI's typeid(T). template inline const std::type_info* GenRuntimeTypeId() { #ifdef ABSL_INTERNAL_HAS_RTTI return &typeid(T); #else return nullptr; #endif } /////////////////////////////////////////////////////////////////////////////// // Flag help auxiliary structs. // This is help argument for absl::Flag encapsulating the string literal pointer // or pointer to function generating it as well as enum descriminating two // cases. using HelpGenFunc = std::string (*)(); template struct FixedCharArray { char value[N]; template static constexpr FixedCharArray FromLiteralString( absl::string_view str, absl::index_sequence) { return (void)str, FixedCharArray({{str[I]..., '\0'}}); } }; template constexpr FixedCharArray HelpStringAsArray(int) { return FixedCharArray::FromLiteralString( Gen::Value(), absl::make_index_sequence{}); } template constexpr std::false_type HelpStringAsArray(char) { return std::false_type{}; } union FlagHelpMsg { constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {} constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {} const char* literal; HelpGenFunc gen_func; }; enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 }; struct FlagHelpArg { FlagHelpMsg source; FlagHelpKind kind; }; extern const char kStrippedFlagHelp[]; // These two HelpArg overloads allows us to select at compile time one of two // way to pass Help argument to absl::Flag. We'll be passing // AbslFlagHelpGenFor##name as Gen and integer 0 as a single argument to prefer // first overload if possible. If help message is evaluatable on constexpr // context We'll be able to make FixedCharArray out of it and we'll choose first // overload. In this case the help message expression is immediately evaluated // and is used to construct the absl::Flag. No additional code is generated by // ABSL_FLAG Otherwise SFINAE kicks in and first overload is dropped from the // consideration, in which case the second overload will be used. The second // overload does not attempt to evaluate the help message expression // immediately and instead delays the evaluation by returning the function // pointer (&T::NonConst) generating the help message when necessary. This is // evaluatable in constexpr context, but the cost is an extra function being // generated in the ABSL_FLAG code. template constexpr FlagHelpArg HelpArg(const FixedCharArray& value) { return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral}; } template constexpr FlagHelpArg HelpArg(std::false_type) { return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc}; } /////////////////////////////////////////////////////////////////////////////// // Flag default value auxiliary structs. // Signature for the function generating the initial flag value (usually // based on default value supplied in flag's definition) using FlagDfltGenFunc = void (*)(void*); union FlagDefaultSrc { constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg) : gen_func(gen_func_arg) {} #define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \ T name##_value; \ constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {} // NOLINT ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE) #undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE void* dynamic_value; FlagDfltGenFunc gen_func; }; enum class FlagDefaultKind : uint8_t { kDynamicValue = 0, kGenFunc = 1, kOneWord = 2 // for default values UP to one word in size }; struct FlagDefaultArg { FlagDefaultSrc source; FlagDefaultKind kind; }; // This struct and corresponding overload to InitDefaultValue are used to // facilitate usage of {} as default value in ABSL_FLAG macro. // TODO(rogeeff): Fix handling types with explicit constructors. struct EmptyBraces {}; template constexpr T InitDefaultValue(T t) { return t; } template constexpr T InitDefaultValue(EmptyBraces) { return T{}; } template ::value, int>::type = ((void)GenT{}, 0)> constexpr FlagDefaultArg DefaultArg(int) { return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord}; } template constexpr FlagDefaultArg DefaultArg(char) { return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc}; } /////////////////////////////////////////////////////////////////////////////// // Flag storage selector traits. Each trait indicates what kind of storage kind // to use for the flag value. template using FlagUseValueAndInitBitStorage = std::integral_constant::value && std::is_default_constructible::value && (sizeof(T) < 8)>; template using FlagUseOneWordStorage = std::integral_constant::value && (sizeof(T) <= 8)>; template using FlagUseSequenceLockStorage = std::integral_constant::value && (sizeof(T) > 8)>; enum class FlagValueStorageKind : uint8_t { kValueAndInitBit = 0, kOneWordAtomic = 1, kSequenceLocked = 2, kHeapAllocated = 3, }; // This constexpr function returns the storage kind for the given flag value // type. template static constexpr FlagValueStorageKind StorageKind() { return FlagUseValueAndInitBitStorage::value ? FlagValueStorageKind::kValueAndInitBit : FlagUseOneWordStorage::value ? FlagValueStorageKind::kOneWordAtomic : FlagUseSequenceLockStorage::value ? FlagValueStorageKind::kSequenceLocked : FlagValueStorageKind::kHeapAllocated; } // This is a base class for the storage classes used by kOneWordAtomic and // kValueAndInitBit storage kinds. It literally just stores the one word value // as an atomic. By default, it is initialized to a magic value that is unlikely // a valid value for the flag value type. struct FlagOneWordValue { constexpr static int64_t Uninitialized() { return static_cast(0xababababababababll); } constexpr FlagOneWordValue() : value(Uninitialized()) {} constexpr explicit FlagOneWordValue(int64_t v) : value(v) {} std::atomic value; }; // This class represents a memory layout used by kValueAndInitBit storage kind. template struct alignas(8) FlagValueAndInitBit { T value; // Use an int instead of a bool to guarantee that a non-zero value has // a bit set. uint8_t init; }; // This class implements an aligned pointer with two options stored via masks // in unused bits of the pointer value (due to alignment requirement). // - IsUnprotectedReadCandidate - indicates that the value can be switched to // unprotected read without a lock. // - HasBeenRead - indicates that the value has been read at least once. // - AllowsUnprotectedRead - combination of the two options above and indicates // that the value can now be read without a lock. // Further details of these options and their use is covered in the description // of the FlagValue specialization. class MaskedPointer { public: using mask_t = uintptr_t; using ptr_t = void*; static constexpr int RequiredAlignment() { return 4; } constexpr explicit MaskedPointer(ptr_t rhs) : ptr_(rhs) {} MaskedPointer(ptr_t rhs, bool is_candidate); void* Ptr() const { return reinterpret_cast(reinterpret_cast(ptr_) & kPtrValueMask); } bool AllowsUnprotectedRead() const { return (reinterpret_cast(ptr_) & kAllowsUnprotectedRead) == kAllowsUnprotectedRead; } bool IsUnprotectedReadCandidate() const; bool HasBeenRead() const; void Set(FlagOpFn op, const void* src, bool is_candidate); void MarkAsRead(); private: // Masks // Indicates that the flag value either default or originated from command // line. static constexpr mask_t kUnprotectedReadCandidate = 0x1u; // Indicates that flag has been read. static constexpr mask_t kHasBeenRead = 0x2u; static constexpr mask_t kAllowsUnprotectedRead = kUnprotectedReadCandidate | kHasBeenRead; static constexpr mask_t kPtrValueMask = ~kAllowsUnprotectedRead; void ApplyMask(mask_t mask); bool CheckMask(mask_t mask) const; ptr_t ptr_; }; // This class implements a type erased storage of the heap allocated flag value. // It is used as a base class for the storage class for kHeapAllocated storage // kind. The initial_buffer is expected to have an alignment of at least // MaskedPointer::RequiredAlignment(), so that the bits used by the // MaskedPointer to store masks are set to 0. This guarantees that value starts // in an uninitialized state. struct FlagMaskedPointerValue { constexpr explicit FlagMaskedPointerValue(MaskedPointer::ptr_t initial_buffer) : value(MaskedPointer(initial_buffer)) {} std::atomic value; }; // This is the forward declaration for the template that represents a storage // for the flag values. This template is expected to be explicitly specialized // for each storage kind and it does not have a generic default // implementation. template ()> struct FlagValue; // This specialization represents the storage of flag values types with the // kValueAndInitBit storage kind. It is based on the FlagOneWordValue class // and relies on memory layout in FlagValueAndInitBit to indicate that the // value has been initialized or not. template struct FlagValue : FlagOneWordValue { constexpr FlagValue() : FlagOneWordValue(0) {} bool Get(const SequenceLock&, T& dst) const { int64_t storage = value.load(std::memory_order_acquire); if (ABSL_PREDICT_FALSE(storage == 0)) { // This assert is to ensure that the initialization inside FlagImpl::Init // is able to set init member correctly. static_assert(offsetof(FlagValueAndInitBit, init) == sizeof(T), "Unexpected memory layout of FlagValueAndInitBit"); return false; } dst = absl::bit_cast>(storage).value; return true; } }; // This specialization represents the storage of flag values types with the // kOneWordAtomic storage kind. It is based on the FlagOneWordValue class // and relies on the magic uninitialized state of default constructed instead of // FlagOneWordValue to indicate that the value has been initialized or not. template struct FlagValue : FlagOneWordValue { constexpr FlagValue() : FlagOneWordValue() {} bool Get(const SequenceLock&, T& dst) const { int64_t one_word_val = value.load(std::memory_order_acquire); if (ABSL_PREDICT_FALSE(one_word_val == FlagOneWordValue::Uninitialized())) { return false; } std::memcpy(&dst, static_cast(&one_word_val), sizeof(T)); return true; } }; // This specialization represents the storage of flag values types with the // kSequenceLocked storage kind. This storage is used by trivially copyable // types with size greater than 8 bytes. This storage relies on uninitialized // state of the SequenceLock to indicate that the value has been initialized or // not. This storage also provides lock-free read access to the underlying // value once it is initialized. template struct FlagValue { bool Get(const SequenceLock& lock, T& dst) const { return lock.TryRead(&dst, value_words, sizeof(T)); } static constexpr int kNumWords = flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t); alignas(T) alignas( std::atomic) std::atomic value_words[kNumWords]; }; // This specialization represents the storage of flag values types with the // kHeapAllocated storage kind. This is a storage of last resort and is used // if none of other storage kinds are applicable. // // Generally speaking the values with this storage kind can't be accessed // atomically and thus can't be read without holding a lock. If we would ever // want to avoid the lock, we'd need to leak the old value every time new flag // value is being set (since we are in danger of having a race condition // otherwise). // // Instead of doing that, this implementation attempts to cater to some common // use cases by allowing at most 2 values to be leaked - default value and // value set from the command line. // // This specialization provides an initial buffer for the first flag value. This // is where the default value is going to be stored. We attempt to reuse this // buffer if possible, including storing the value set from the command line // there. // // As long as we only read this value, we can access it without a lock (in // practice we still use the lock for the very first read to be able set // "has been read" option on this flag). // // If flag is specified on the command line we store the parsed value either // in the internal buffer (if the default value never been read) or we leak the // default value and allocate the new storage for the parse value. This value is // also a candidate for an unprotected read. If flag is set programmatically // after the command line is parsed, the storage for this value is going to be // leaked. Note that in both scenarios we are not going to have a real leak. // Instead we'll store the leaked value pointers in the internal freelist to // avoid triggering the memory leak checker complains. // // If the flag is ever set programmatically, it stops being the candidate for an // unprotected read, and any follow up access to the flag value requires a lock. // Note that if the value if set programmatically before the command line is // parsed, we can switch back to enabling unprotected reads for that value. template struct FlagValue : FlagMaskedPointerValue { // We const initialize the value with unmasked pointer to the internal buffer, // making sure it is not a candidate for unprotected read. This way we can // ensure Init is done before any access to the flag value. constexpr FlagValue() : FlagMaskedPointerValue(&buffer[0]) {} bool Get(const SequenceLock&, T& dst) const { MaskedPointer ptr_value = value.load(std::memory_order_acquire); if (ABSL_PREDICT_TRUE(ptr_value.AllowsUnprotectedRead())) { ::new (static_cast(&dst)) T(*static_cast(ptr_value.Ptr())); return true; } return false; } alignas(MaskedPointer::RequiredAlignment()) alignas( T) char buffer[sizeof(T)]{}; }; /////////////////////////////////////////////////////////////////////////////// // Flag callback auxiliary structs. // Signature for the mutation callback used by watched Flags // The callback is noexcept. // TODO(rogeeff): add noexcept after C++17 support is added. using FlagCallbackFunc = void (*)(); struct FlagCallback { FlagCallbackFunc func; absl::Mutex guard; // Guard for concurrent callback invocations. }; /////////////////////////////////////////////////////////////////////////////// // Flag implementation, which does not depend on flag value type. // The class encapsulates the Flag's data and access to it. struct DynValueDeleter { explicit DynValueDeleter(FlagOpFn op_arg = nullptr); void operator()(void* ptr) const; FlagOpFn op; }; class FlagState; // These are only used as constexpr global objects. // They do not use a virtual destructor to simplify their implementation. // They are not destroyed except at program exit, so leaks do not matter. #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnon-virtual-dtor" #endif class FlagImpl final : public CommandLineFlag { public: constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op, FlagHelpArg help, FlagValueStorageKind value_kind, FlagDefaultArg default_arg) : name_(name), filename_(filename), op_(op), help_(help.source), help_source_kind_(static_cast(help.kind)), value_storage_kind_(static_cast(value_kind)), def_kind_(static_cast(default_arg.kind)), modified_(false), on_command_line_(false), callback_(nullptr), default_value_(default_arg.source), data_guard_{} {} // Constant access methods int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard()); bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard()); void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard()); void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { *value = ReadOneBool(); } template () == FlagValueStorageKind::kOneWordAtomic, int> = 0> void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { int64_t v = ReadOneWord(); std::memcpy(value, static_cast(&v), sizeof(T)); } template () == FlagValueStorageKind::kValueAndInitBit, int>::type = 0> void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { *value = absl::bit_cast>(ReadOneWord()).value; } // Mutating access methods void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard()); // Interfaces to operate on callbacks. void SetCallback(const FlagCallbackFunc mutation_callback) ABSL_LOCKS_EXCLUDED(*DataGuard()); void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Used in read/write operations to validate source/target has correct type. // For example if flag is declared as absl::Flag FLAGS_foo, a call to // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed // int. To do that we pass the assumed type id (which is deduced from type // int) as an argument `type_id`, which is in turn is validated against the // type id stored in flag object by flag definition statement. void AssertValidType(FlagFastTypeId type_id, const std::type_info* (*gen_rtti)()) const; private: template friend class Flag; friend class FlagState; // Ensures that `data_guard_` is initialized and returns it. absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED(reinterpret_cast(data_guard_)); // Returns heap allocated value of type T initialized with default value. std::unique_ptr MakeInitValue() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Flag initialization called via absl::call_once. void Init(); // Offset value access methods. One per storage kind. These methods to not // respect const correctness, so be very careful using them. // This is a shared helper routine which encapsulates most of the magic. Since // it is only used inside the three routines below, which are defined in // flag.cc, we can define it in that file as well. template StorageT* OffsetValue() const; // The same as above, but used for sequencelock-protected storage. std::atomic* AtomicBufferValue() const; // This is an accessor for a value stored as one word atomic. Returns a // mutable reference to an atomic value. std::atomic& OneWordValue() const; std::atomic& PtrStorage() const; // Attempts to parse supplied `value` string. If parsing is successful, // returns new value. Otherwise returns nullptr. std::unique_ptr TryParse(absl::string_view value, std::string& err) const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Stores the flag value based on the pointer to the source. void StoreValue(const void* src, ValueSource source) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Copy the flag data, protected by `seq_lock_` into `dst`. // // REQUIRES: ValueStorageKind() == kSequenceLocked. void ReadSequenceLockedData(void* dst) const ABSL_LOCKS_EXCLUDED(*DataGuard()); FlagHelpKind HelpSourceKind() const { return static_cast(help_source_kind_); } FlagValueStorageKind ValueStorageKind() const { return static_cast(value_storage_kind_); } FlagDefaultKind DefaultKind() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) { return static_cast(def_kind_); } // CommandLineFlag interface implementation absl::string_view Name() const override; std::string Filename() const override; std::string Help() const override; FlagFastTypeId TypeId() const override; bool IsSpecifiedOnCommandLine() const override ABSL_LOCKS_EXCLUDED(*DataGuard()); std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard()); std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard()); bool ValidateInputValue(absl::string_view value) const override ABSL_LOCKS_EXCLUDED(*DataGuard()); void CheckDefaultValueParsingRoundtrip() const override ABSL_LOCKS_EXCLUDED(*DataGuard()); int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Interfaces to save and restore flags to/from persistent state. // Returns current flag state or nullptr if flag does not support // saving and restoring a state. std::unique_ptr SaveState() override ABSL_LOCKS_EXCLUDED(*DataGuard()); // Restores the flag state to the supplied state object. If there is // nothing to restore returns false. Otherwise returns true. bool RestoreState(const FlagState& flag_state) ABSL_LOCKS_EXCLUDED(*DataGuard()); bool ParseFrom(absl::string_view value, FlagSettingMode set_mode, ValueSource source, std::string& error) override ABSL_LOCKS_EXCLUDED(*DataGuard()); // Immutable flag's state. // Flags name passed to ABSL_FLAG as second arg. const char* const name_; // The file name where ABSL_FLAG resides. const char* const filename_; // Type-specific operations vtable. const FlagOpFn op_; // Help message literal or function to generate it. const FlagHelpMsg help_; // Indicates if help message was supplied as literal or generator func. const uint8_t help_source_kind_ : 1; // Kind of storage this flag is using for the flag's value. const uint8_t value_storage_kind_ : 2; uint8_t : 0; // The bytes containing the const bitfields must not be // shared with bytes containing the mutable bitfields. // Mutable flag's state (guarded by `data_guard_`). // def_kind_ is not guard by DataGuard() since it is accessed in Init without // locks. uint8_t def_kind_ : 2; // Has this flag's value been modified? bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard()); // Has this flag been specified on command line. bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard()); // Unique tag for absl::call_once call to initialize this flag. absl::once_flag init_control_; // Sequence lock / mutation counter. flags_internal::SequenceLock seq_lock_; // Optional flag's callback and absl::Mutex to guard the invocations. FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard()); // Either a pointer to the function generating the default value based on the // value specified in ABSL_FLAG or pointer to the dynamically set default // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish // these two cases. FlagDefaultSrc default_value_; // This is reserved space for an absl::Mutex to guard flag data. It will be // initialized in FlagImpl::Init via placement new. // We can't use "absl::Mutex data_guard_", since this class is not literal. // We do not want to use "absl::Mutex* data_guard_", since this would require // heap allocation during initialization, which is both slows program startup // and can fail. Using reserved space + placement new allows us to avoid both // problems. alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)]; }; #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif /////////////////////////////////////////////////////////////////////////////// // The Flag object parameterized by the flag's value type. This class implements // flag reflection handle interface. template class Flag { public: constexpr Flag(const char* name, const char* filename, FlagHelpArg help, const FlagDefaultArg default_arg) : impl_(name, filename, &FlagOps, help, flags_internal::StorageKind(), default_arg), value_() {} // CommandLineFlag interface absl::string_view Name() const { return impl_.Name(); } std::string Filename() const { return impl_.Filename(); } std::string Help() const { return impl_.Help(); } // Do not use. To be removed. bool IsSpecifiedOnCommandLine() const { return impl_.IsSpecifiedOnCommandLine(); } std::string DefaultValue() const { return impl_.DefaultValue(); } std::string CurrentValue() const { return impl_.CurrentValue(); } private: template friend class FlagRegistrar; friend class FlagImplPeer; T Get() const { // See implementation notes in CommandLineFlag::Get(). union U { T value; U() {} ~U() { value.~T(); } }; U u; #if !defined(NDEBUG) impl_.AssertValidType(base_internal::FastTypeId(), &GenRuntimeTypeId); #endif if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) { impl_.Read(&u.value); } return std::move(u.value); } void Set(const T& v) { impl_.AssertValidType(base_internal::FastTypeId(), &GenRuntimeTypeId); impl_.Write(&v); } // Access to the reflection. const CommandLineFlag& Reflect() const { return impl_; } // Flag's data // The implementation depends on value_ field to be placed exactly after the // impl_ field, so that impl_ can figure out the offset to the value and // access it. FlagImpl impl_; FlagValue value_; }; /////////////////////////////////////////////////////////////////////////////// // Trampoline for friend access class FlagImplPeer { public: template static T InvokeGet(const FlagType& flag) { return flag.Get(); } template static void InvokeSet(FlagType& flag, const T& v) { flag.Set(v); } template static const CommandLineFlag& InvokeReflect(const FlagType& f) { return f.Reflect(); } }; /////////////////////////////////////////////////////////////////////////////// // Implementation of Flag value specific operations routine. template void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) { struct AlignedSpace { alignas(MaskedPointer::RequiredAlignment()) alignas(T) char buf[sizeof(T)]; }; using Allocator = std::allocator; switch (op) { case FlagOp::kAlloc: { Allocator alloc; return std::allocator_traits::allocate(alloc, 1); } case FlagOp::kDelete: { T* p = static_cast(v2); p->~T(); Allocator alloc; std::allocator_traits::deallocate( alloc, reinterpret_cast(p), 1); return nullptr; } case FlagOp::kCopy: *static_cast(v2) = *static_cast(v1); return nullptr; case FlagOp::kCopyConstruct: new (v2) T(*static_cast(v1)); return nullptr; case FlagOp::kSizeof: return reinterpret_cast(static_cast(sizeof(T))); case FlagOp::kFastTypeId: return const_cast(base_internal::FastTypeId()); case FlagOp::kRuntimeTypeId: return const_cast(GenRuntimeTypeId()); case FlagOp::kParse: { // Initialize the temporary instance of type T based on current value in // destination (which is going to be flag's default value). T temp(*static_cast(v2)); if (!absl::ParseFlag(*static_cast(v1), &temp, static_cast(v3))) { return nullptr; } *static_cast(v2) = std::move(temp); return v2; } case FlagOp::kUnparse: *static_cast(v2) = absl::UnparseFlag(*static_cast(v1)); return nullptr; case FlagOp::kValueOffset: { // Round sizeof(FlagImp) to a multiple of alignof(FlagValue) to get the // offset of the data. size_t round_to = alignof(FlagValue); size_t offset = (sizeof(FlagImpl) + round_to - 1) / round_to * round_to; return reinterpret_cast(offset); } } return nullptr; } /////////////////////////////////////////////////////////////////////////////// // This class facilitates Flag object registration and tail expression-based // flag definition, for example: // ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher); struct FlagRegistrarEmpty {}; template class FlagRegistrar { public: constexpr explicit FlagRegistrar(Flag& flag, const char* filename) : flag_(flag) { if (do_register) flags_internal::RegisterCommandLineFlag(flag_.impl_, filename); } FlagRegistrar OnUpdate(FlagCallbackFunc cb) && { flag_.impl_.SetCallback(cb); return *this; } // Makes the registrar die gracefully as an empty struct on a line where // registration happens. Registrar objects are intended to live only as // temporary. constexpr operator FlagRegistrarEmpty() const { return {}; } // NOLINT private: Flag& flag_; // Flag being registered (not owned). }; /////////////////////////////////////////////////////////////////////////////// // Test only API uint64_t NumLeakedFlagValues(); } // namespace flags_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_FLAGS_INTERNAL_FLAG_H_