// Copyright 2018 Chia Network Inc and POA Networks Ltd. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::{env, fs::File, io::Write, path::PathBuf, u16}; /// The number of odd primes less than 65536. const PRIMES_LEN: usize = 6541; /// The number of integers that are: /// /// * equal to 7 mod 8 /// * not divisible by any prime number less than or equal to 13. /// * less than 8 * 3 * 5 * 7 * 11 * 13 const RESIDUES_LEN: usize = 5760; /// The number of odd prime numbers between 13 and 65536 exclusive. const SIEVE_INFO_LEN: usize = PRIMES_LEN - 5; fn odd_primes_below_65536() -> Vec { const N: usize = 1 << 16; let mut sieve = vec![true; N >> 1]; let mut q = (N as f64).powf(0.5) as usize; assert!(q * q <= N); q += 1; assert!(q * q > N); for i in (3..q).step_by(2) { if sieve[i >> 1] { for i in ((i * i >> 1)..sieve.len()).step_by(i) { sieve[i] = false; } } } // mega cheat ― we know the exact size of this vector let res: Vec<_> = (1..N / 2) .filter(|&i| sieve[i]) .map(|i| 2 * i + 1) .collect(); assert_eq!(res.len(), PRIMES_LEN); res } fn mod_exponentiation(base: usize, exponent: usize, modulus: usize) -> usize { assert!(base < u16::MAX.into()); assert!(exponent < u16::MAX.into()); assert!(modulus < u16::MAX.into()); let (mut base, mut exponent, modulus) = (base as u32, exponent as u32, modulus as u32); let mut state = 1; loop { if exponent & 1 != 0 { state *= base; state %= modulus; } exponent >>= 1; if exponent == 0 { return state as _; } base *= base; base %= modulus; } } macro_rules! const_fmt { () => { "#[allow(warnings)]\nconst {}: [{}; {}] = {:#?};\n\n"; }; } /// A product of many small prime numbers. We precompute the numbers between /// `1` and `M` that are coprime to `M`. Any number whose residue modulo `M` is /// one of these is not divisible by any of the prime factors of `M`. This /// speeds up the generation of random prime numbers. const M: usize = 8 * 3 * 5 * 7 * 11 * 13; fn emit(f: &mut dyn Write, name: &str, t: &str, obj: &[T]) { write!(f, const_fmt!(), name, t, obj.len(), obj).expect("i/o error in build script"); } /// Write the generated code to `f`. fn generate(f: &mut dyn Write) { write!(f, "const M: u32 = 8 * 3 * 5 * 7 * 11 * 13;\n\n").expect("i/o error"); let residues: Vec = { let primes = [3, 5, 7, 11, 13]; let not_divisible = |&x: &usize| primes.iter().all(|p| x % p != 0); (7..M).step_by(8).filter(not_divisible).collect() }; assert_eq!(residues.len(), RESIDUES_LEN); emit(f, "RESIDUES", "u32", &residues[..]); let sieve_info: Vec<(usize, usize)> = odd_primes_below_65536()[5..] .iter() .map(|&i| (i, mod_exponentiation(M % i, i - 2, i))) .collect(); assert_eq!(sieve_info.len(), SIEVE_INFO_LEN); emit(f, "SIEVE_INFO", "(u16, u16)", &sieve_info[..]); } fn main() { println!("cargo:rerun-if-changed=build.rs"); let manifest_path = env::var("OUT_DIR").expect("cargo should have set this"); let mut path = PathBuf::from(&manifest_path); path.push("constants.rs"); let mut f = File::create(path).expect("cannot create constants.rs"); generate(&mut f); }