/*---------------------------------------------------------------*/ /*--- begin host_mips_defs.h ---*/ /*---------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2010-2017 RT-RK This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . The GNU General Public License is contained in the file COPYING. */ #ifndef __VEX_HOST_MIPS_DEFS_H #define __VEX_HOST_MIPS_DEFS_H #include "libvex_basictypes.h" #include "libvex.h" /* VexArch */ #include "host_generic_regs.h" /* HReg */ /* --------- Registers. --------- */ #define ST_IN static inline #define GPR(_mode64, _enc, _ix64, _ix32) \ mkHReg(False, (_mode64) ? HRcInt64 : HRcInt32, \ (_enc), (_mode64) ? (_ix64) : (_ix32)) #define FR(_mode64, _enc, _ix64, _ix32) \ mkHReg(False, (_mode64) ? HRcFlt64 : HRcFlt32, \ (_enc), (_mode64) ? (_ix64) : (_ix32)) #define DR(_mode64, _enc, _ix64, _ix32) \ mkHReg(False, HRcFlt64, \ (_enc), (_mode64) ? (_ix64) : (_ix32)) #define VEC(_mode64, _enc, _ix64, _ix32) \ mkHReg(False, HRcVec128, \ (_enc), (_mode64) ? (_ix64) : (_ix32)) ST_IN HReg hregMIPS_GPR16 ( Bool mode64 ) { return GPR(mode64, 16, 0, 0); } ST_IN HReg hregMIPS_GPR17 ( Bool mode64 ) { return GPR(mode64, 17, 1, 1); } ST_IN HReg hregMIPS_GPR18 ( Bool mode64 ) { return GPR(mode64, 18, 2, 2); } ST_IN HReg hregMIPS_GPR19 ( Bool mode64 ) { return GPR(mode64, 19, 3, 3); } ST_IN HReg hregMIPS_GPR20 ( Bool mode64 ) { return GPR(mode64, 20, 4, 4); } ST_IN HReg hregMIPS_GPR21 ( Bool mode64 ) { return GPR(mode64, 21, 5, 5); } ST_IN HReg hregMIPS_GPR22 ( Bool mode64 ) { return GPR(mode64, 22, 6, 6); } ST_IN HReg hregMIPS_GPR12 ( Bool mode64 ) { return GPR(mode64, 12, 7, 7); } ST_IN HReg hregMIPS_GPR13 ( Bool mode64 ) { return GPR(mode64, 13, 8, 8); } ST_IN HReg hregMIPS_GPR14 ( Bool mode64 ) { return GPR(mode64, 14, 9, 9); } ST_IN HReg hregMIPS_GPR15 ( Bool mode64 ) { return GPR(mode64, 15, 10, 10); } ST_IN HReg hregMIPS_GPR24 ( Bool mode64 ) { return GPR(mode64, 24, 11, 11); } ST_IN HReg hregMIPS_F16 ( Bool mode64 ) { return FR (mode64, 16, 12, 12); } ST_IN HReg hregMIPS_F18 ( Bool mode64 ) { return FR (mode64, 18, 13, 13); } ST_IN HReg hregMIPS_F20 ( Bool mode64 ) { return FR (mode64, 20, 14, 14); } ST_IN HReg hregMIPS_F22 ( Bool mode64 ) { return FR (mode64, 22, 15, 15); } ST_IN HReg hregMIPS_F24 ( Bool mode64 ) { return FR (mode64, 24, 16, 16); } ST_IN HReg hregMIPS_F26 ( Bool mode64 ) { return FR (mode64, 26, 17, 17); } ST_IN HReg hregMIPS_F28 ( Bool mode64 ) { return FR (mode64, 28, 18, 18); } ST_IN HReg hregMIPS_F30 ( Bool mode64 ) { return FR (mode64, 30, 19, 19); } ST_IN HReg hregMIPS_W16 ( Bool mode64 ) { return VEC(mode64, 1, 20, 20); } ST_IN HReg hregMIPS_W17 ( Bool mode64 ) { return VEC(mode64, 3, 21, 21); } ST_IN HReg hregMIPS_W18 ( Bool mode64 ) { return VEC(mode64, 5, 22, 22); } ST_IN HReg hregMIPS_W19 ( Bool mode64 ) { return VEC(mode64, 7, 23, 23); } ST_IN HReg hregMIPS_W20 ( Bool mode64 ) { return VEC(mode64, 9, 24, 24); } ST_IN HReg hregMIPS_W21 ( Bool mode64 ) { return VEC(mode64, 11, 25, 25); } ST_IN HReg hregMIPS_W22 ( Bool mode64 ) { return VEC(mode64, 13, 26, 26); } ST_IN HReg hregMIPS_W23 ( Bool mode64 ) { return VEC(mode64, 15, 27, 27); } ST_IN HReg hregMIPS_W24 ( Bool mode64 ) { return VEC(mode64, 17, 28, 28); } ST_IN HReg hregMIPS_W25 ( Bool mode64 ) { return VEC(mode64, 19, 29, 29); } ST_IN HReg hregMIPS_W26 ( Bool mode64 ) { return VEC(mode64, 21, 30, 30); } ST_IN HReg hregMIPS_W27 ( Bool mode64 ) { return VEC(mode64, 23, 31, 31); } ST_IN HReg hregMIPS_W28 ( Bool mode64 ) { return VEC(mode64, 25, 32, 32); } ST_IN HReg hregMIPS_W29 ( Bool mode64 ) { return VEC(mode64, 27, 33, 33); } ST_IN HReg hregMIPS_W30 ( Bool mode64 ) { return VEC(mode64, 29, 34, 34); } ST_IN HReg hregMIPS_W31 ( Bool mode64 ) { return VEC(mode64, 31, 35, 35); } // DRs are only allocatable in 32-bit mode, so the 64-bit index numbering // doesn't advance here. ST_IN HReg hregMIPS_D0 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 0, 0, 36); } ST_IN HReg hregMIPS_D1 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 2, 0, 37); } ST_IN HReg hregMIPS_D2 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 4, 0, 38); } ST_IN HReg hregMIPS_D3 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 6, 0, 39); } ST_IN HReg hregMIPS_D4 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 8, 0, 40); } ST_IN HReg hregMIPS_D5 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 10, 0, 41); } ST_IN HReg hregMIPS_D6 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 12, 0, 42); } ST_IN HReg hregMIPS_D7 ( Bool mode64 ) { vassert(!mode64); return DR (mode64, 14, 0, 43); } ST_IN HReg hregMIPS_HI ( Bool mode64 ) { return FR (mode64, 33, 36, 44); } ST_IN HReg hregMIPS_LO ( Bool mode64 ) { return FR (mode64, 34, 37, 45); } ST_IN HReg hregMIPS_GPR0 ( Bool mode64 ) { return GPR(mode64, 0, 38, 46); } ST_IN HReg hregMIPS_GPR1 ( Bool mode64 ) { return GPR(mode64, 1, 39, 47); } ST_IN HReg hregMIPS_GPR2 ( Bool mode64 ) { return GPR(mode64, 2, 40, 48); } ST_IN HReg hregMIPS_GPR3 ( Bool mode64 ) { return GPR(mode64, 3, 41, 49); } ST_IN HReg hregMIPS_GPR4 ( Bool mode64 ) { return GPR(mode64, 4, 42, 50); } ST_IN HReg hregMIPS_GPR5 ( Bool mode64 ) { return GPR(mode64, 5, 43, 51); } ST_IN HReg hregMIPS_GPR6 ( Bool mode64 ) { return GPR(mode64, 6, 44, 52); } ST_IN HReg hregMIPS_GPR7 ( Bool mode64 ) { return GPR(mode64, 7, 45, 53); } ST_IN HReg hregMIPS_GPR8 ( Bool mode64 ) { return GPR(mode64, 8, 46, 54); } ST_IN HReg hregMIPS_GPR9 ( Bool mode64 ) { return GPR(mode64, 9, 47, 55); } ST_IN HReg hregMIPS_GPR10 ( Bool mode64 ) { return GPR(mode64, 10, 48, 56); } ST_IN HReg hregMIPS_GPR11 ( Bool mode64 ) { return GPR(mode64, 11, 49, 57); } ST_IN HReg hregMIPS_GPR23 ( Bool mode64 ) { return GPR(mode64, 23, 50, 58); } ST_IN HReg hregMIPS_GPR25 ( Bool mode64 ) { return GPR(mode64, 25, 51, 59); } ST_IN HReg hregMIPS_GPR29 ( Bool mode64 ) { return GPR(mode64, 29, 52, 60); } ST_IN HReg hregMIPS_GPR31 ( Bool mode64 ) { return GPR(mode64, 31, 53, 61); } #undef ST_IN #undef GPR #undef FR #undef DR #undef VEC #define GuestStatePointer(_mode64) hregMIPS_GPR23(_mode64) #define StackFramePointer(_mode64) hregMIPS_GPR30(_mode64) #define StackPointer(_mode64) hregMIPS_GPR29(_mode64) #define Zero(_mode64) hregMIPS_GPR0(_mode64) /* guest_COND offset */ #define COND_OFFSET(_mode64) ((_mode64) ? 588 : 448) /* guest_MSACSR offset */ #define MSACSR_OFFSET(_mode64) ((_mode64) ? 1144 : 1016) /* Num registers used for function calls */ #if defined(VGP_mips32_linux) /* a0, a1, a2, a3 */ # define MIPS_N_REGPARMS 4 #else /* a0, a1, a2, a3, a4, a5, a6, a7 */ # define MIPS_N_REGPARMS 8 #endif extern UInt ppHRegMIPS ( HReg, Bool ); #define OPC_MSA 0x78000000 /* --------- Condition codes, Intel encoding. --------- */ typedef enum { MIPScc_EQ = 0, /* equal */ MIPScc_NE = 1, /* not equal */ MIPScc_HS = 2, /* >=u (higher or same) */ MIPScc_LO = 3, /* u (higher) */ MIPScc_LS = 9, /* <=u (lower or same) */ MIPScc_GE = 10, /* >=s (signed greater or equal) */ MIPScc_LT = 11, /* s (signed greater) */ MIPScc_LE = 13, /* <=s (signed less or equal) */ MIPScc_AL = 14, /* always (unconditional) */ MIPScc_NV = 15 /* never (unconditional): */ } MIPSCondCode; extern const HChar *showMIPSCondCode(MIPSCondCode); /* --------- Memory address expressions (amodes). --------- */ typedef enum { Mam_IR, /* Immediate (signed 16-bit) + Reg */ Mam_RR /* Reg1 + Reg2 */ } MIPSAModeTag; typedef struct { MIPSAModeTag tag; union { struct { HReg base; Int index; } IR; struct { HReg base; HReg index; } RR; } Mam; } MIPSAMode; extern MIPSAMode *MIPSAMode_IR(Int, HReg); extern MIPSAMode *MIPSAMode_RR(HReg, HReg); extern MIPSAMode *dopyMIPSAMode(MIPSAMode *); extern MIPSAMode *nextMIPSAModeFloat(MIPSAMode *); extern MIPSAMode *nextMIPSAModeInt(MIPSAMode *); extern void ppMIPSAMode(MIPSAMode *, Bool); /* --------- Operand, which can be a reg or a u16/s16. --------- */ /* ("RH" == "Register or Halfword immediate") */ typedef enum { Mrh_Imm, Mrh_Reg } MIPSRHTag; typedef struct { MIPSRHTag tag; union { struct { Bool syned; UShort imm16; } Imm; struct { HReg reg; } Reg; } Mrh; } MIPSRH; extern void ppMIPSRH(MIPSRH *, Bool); extern MIPSRH *MIPSRH_Imm(Bool, UShort); extern MIPSRH *MIPSRH_Reg(HReg); /* --------- Instructions. --------- */ /*Tags for operations*/ /* --------- */ typedef enum { Mun_CLO, Mun_CLZ, Mun_DCLO, Mun_DCLZ, Mun_NOP, } MIPSUnaryOp; extern const HChar *showMIPSUnaryOp(MIPSUnaryOp); /* --------- */ /* --------- */ typedef enum { Malu_INVALID, Malu_ADD, Malu_SUB, Malu_AND, Malu_OR, Malu_NOR, Malu_XOR, Malu_DADD, Malu_DSUB, Malu_SLT } MIPSAluOp; extern const HChar *showMIPSAluOp(MIPSAluOp, Bool /* is the 2nd operand an immediate? */ ); /* --------- */ typedef enum { Mshft_INVALID, Mshft_SLL, Mshft_SRL, Mshft_SRA } MIPSShftOp; extern const HChar *showMIPSShftOp(MIPSShftOp, Bool /* is the 2nd operand an immediate? */ , Bool /* is this a 32bit or 64bit op? */ ); /* --------- */ typedef enum { Macc_ADD, Macc_SUB } MIPSMaccOp; extern const HChar *showMIPSMaccOp(MIPSMaccOp, Bool); /* --------- */ typedef enum { MSA_LD = 8, MSA_ST = 9 } MSAMI10Op; extern const HChar *showMsaMI10op(MSAMI10Op); typedef enum { MSA_SLDI = 0, MSA_COPY_S = 2, MSA_COPY_U = 3, MSA_INSERT = 4, MSA_INSVE = 5, MSA_MOVE = 0xBE, MSA_CFCMSA = 0x7E, MSA_CTCMSA = 0x3E } MSAELMOp; extern const HChar *showMsaElmOp(MSAELMOp); typedef enum { MSA_FILL = 0xC0, MSA_PCNT = 0xC1, MSA_NLOC = 0xC2, MSA_NLZC = 0xC3 } MSA2ROp; extern const HChar *showMsa2ROp(MSA2ROp); typedef enum { MSA_FTRUNC_S = 0x191, MSA_FTRUNC_U = 0x192, MSA_FFINT_S = 0x19E, MSA_FFINT_U = 0x19F, MSA_FSQRT = 0x193, MSA_FRSQRT = 0x194, MSA_FRCP = 0x195, MSA_FLOG2 = 0x197, MSA_FEXUPR = 0x199, MSA_FTINT_U = 0x19D, MSA_FTINT_S = 0x19C, } MSA2RFOp; extern const HChar *showMsa2RFOp(MSA2RFOp); typedef enum { MSA_SLL = 0xD, MSA_ADDV, MSA_CEQ, MSA_ADD_A, MSA_SUBS_S, MSA_SLD = 0x14, MSA_SRA = 0x80000D, MSA_SUBV, MSA_SUBS_U = 0x800011, MSA_SRL = 0x100000D, MSA_MAX_S, MSA_CLT_S, MSA_ADDS_S, MSA_PCKEV = 0x1000014, MSA_MAX_U = 0x180000E, MSA_CLT_U, MSA_ADDS_U, MSA_PCKOD = 0x1800014, MSA_MIN_S = 0x200000E, MSA_ILVL = 0x2000014, MSA_MIN_U = 0x280000E, MSA_ILVR = 0x2800014, MSA_AVER_S = 0x3000010, MSA_ILVEV = 0x3000014, MSA_AVER_U = 0x3800010, MSA_ILVOD = 0x3800014, MSA_MULV = 0x0000012, MSA_SPLAT = 0x0800014, MSA_DIVS = 0x2000012, MSA_DIVU = 0x2800012, MSA_VSHF = 0x0000015, } MSA3ROp; extern const HChar *showMsa3ROp(MSA3ROp); typedef enum { MSA_FADD = 0x000001B, MSA_FCUN = 0x040001A, MSA_FSUB = 0x040001B, MSA_FCEQ = 0x080001A, MSA_FMUL = 0x080001B, MSA_FDIV = 0x0C0001B, MSA_FMADD = 0x100001B, MSA_FCLT = 0x100001A, MSA_FMSUB = 0x140001B, MSA_FEXP2 = 0x1C0001B, MSA_FMIN = 0x300001B, MSA_FMIN_A = 0x340001B, MSA_FMAX = 0x380001B, MSA_MUL_Q = 0x100001C, MSA_FCLE = 0x180001A, MSA_FTQ = 0x280001B, MSA_FEXDO = 0x200001B, MSA_MULR_Q = 0x300001C, } MSA3RFOp; extern const HChar *showMsa3RFOp(MSA3RFOp); typedef enum { MSA_ANDV, MSA_ORV, MSA_NORV, MSA_XORV } MSAVECOp; extern const HChar *showMsaVecOp(MSAVECOp); typedef enum { MSA_SLLI = 9, MSA_SAT_S, MSA_SRAI = 0x800009, MSA_SRLI = 0x1000009, MSA_SRARI = 0x100000A } MSABITOp; extern const HChar *showMsaBitOp(MSABITOp); typedef enum { MSA_B = 0, MSA_H = 1, MSA_W = 2, MSA_D = 3, } MSADF; extern HChar showMsaDF(MSADF df); typedef enum { MSA_DFN_B = 0x00, MSA_DFN_H = 0x20, MSA_DFN_W = 0x30, MSA_DFN_D = 0x38, } MSADFNMask; typedef enum { MSA_F_WH = 0, MSA_F_DW = 1, } MSADFFlx; extern HChar showMsaDFF(MSADFFlx df, int op); /* ----- Instruction tags ----- */ typedef enum { Min_LI, /* load word (32/64-bit) immediate (fake insn) */ Min_Alu, /* word add/sub/and/or/xor/nor/others? */ Min_Shft, /* word sll/srl/sra */ Min_Unary, /* clo, clz, nop, neg */ Min_Ext, /* ext / dext, dextm, dextu */ Min_Rotx, Min_Cmp, /* word compare (fake insn) */ Min_Mul, /* non-widening, 32-bit, signed multiply */ Min_Mult, /* widening multiply */ Min_Mulr6, Min_Div, /* div */ Min_Divr6, Min_Call, /* call to address in register */ /* The following 5 insns are mandated by translation chaining */ Min_XDirect, /* direct transfer to GA */ Min_XIndir, /* indirect transfer to GA */ Min_XAssisted, /* assisted transfer to GA */ Min_EvCheck, /* Event check */ Min_ProfInc, /* 64-bit profile counter increment */ Min_RdWrLR, /* Read/Write Link Register */ Min_Mthi, /* Move to HI from GP register */ Min_Mtlo, /* Move to LO from GP register */ Min_Mfhi, /* Move from HI to GP register */ Min_Mflo, /* Move from LO to GP register */ Min_Macc, /* Multiply and accumulate */ Min_Load, /* zero-extending load a 8|16|32 bit value from mem */ Min_Store, /* store a 8|16|32 bit value to mem */ Min_Cas, /* compare and swap */ Min_LoadL, /* mips Load Linked Word - LL */ Min_StoreC, /* mips Store Conditional Word - SC */ Min_FpUnary, /* FP unary op */ Min_FpBinary, /* FP binary op */ Min_FpTernary, /* FP ternary op */ Min_FpConvert, /* FP conversion op */ Min_FpMulAcc, /* FP multipy-accumulate style op */ Min_FpLdSt, /* FP load/store */ Min_FpSTFIW, /* stfiwx */ Min_FpRSP, /* FP round IEEE754 double to IEEE754 single */ Min_FpCftI, /* fcfid/fctid/fctiw */ Min_FpCMov, /* FP floating point conditional move */ Min_MtFCSR, /* set FCSR register */ Min_MfFCSR, /* get FCSR register */ Min_FpCompare, /* FP compare, generating value into int reg */ Min_FpMinMax, /* FP r6 min and max*/ Min_FpGpMove, /* Move from/to fpr to/from gpr */ Min_MoveCond, /* Move Conditional */ Msa_MI10, Msa_ELM, Msa_3R, Msa_2R, Msa_VEC, Msa_BIT, Msa_3RF, Msa_2RF, } MIPSInstrTag; /* --------- */ typedef enum { Mfp_INVALID, /* Ternary */ Mfp_MADDD, Mfp_MSUBD, Mfp_MADDS, Mfp_MSUBS, /* Binary */ Mfp_ADDD, Mfp_SUBD, Mfp_MULD, Mfp_DIVD, Mfp_ADDS, Mfp_SUBS, Mfp_MULS, Mfp_DIVS, /* Unary */ Mfp_SQRTS, Mfp_SQRTD, Mfp_ABSS, Mfp_ABSD, Mfp_NEGS, Mfp_NEGD, Mfp_MOVS, Mfp_MOVD, /* FP convert */ Mfp_CVTSD, Mfp_CVTSW, Mfp_CVTWD, Mfp_CVTWS, Mfp_CVTDL, Mfp_CVTSL, Mfp_CVTLS, Mfp_CVTLD, Mfp_TRULS, Mfp_TRULD, Mfp_TRUWS, Mfp_TRUWD, Mfp_FLOORWS, Mfp_FLOORWD, Mfp_ROUNDWS, Mfp_ROUNDWD, Mfp_CVTDW, Mfp_CEILWS, Mfp_CEILWD, Mfp_CEILLS, Mfp_CEILLD, Mfp_CVTDS, Mfp_ROUNDLD, Mfp_FLOORLD, Mfp_RINTS, Mfp_RINTD, /* FP compare */ Mfp_CMP_UN, Mfp_CMP_EQ, Mfp_CMP_LT, Mfp_CMP_NGT, Mfp_CMP_UN_S, Mfp_CMP_EQ_S, Mfp_CMP_LT_S, Mfp_CMP_NGT_S, /*MAX and MIN*/ Mfp_MAXS, Mfp_MAXD, Mfp_MINS, Mfp_MIND } MIPSFpOp; extern const HChar *showMIPSFpOp(MIPSFpOp); typedef enum { Rotx32, Rotx64 } MIPSRotxOp; extern const HChar *showRotxOp(MIPSRotxOp); /* Move from/to fpr to/from gpr */ typedef enum { MFpGpMove_mfc1, /* Move Word From Floating Point - MIPS32 */ MFpGpMove_dmfc1, /* Doubleword Move from Floating Point - MIPS64 */ MFpGpMove_mtc1, /* Move Word to Floating Point - MIPS32 */ MFpGpMove_dmtc1 /* Doubleword Move to Floating Point - MIPS64 */ } MIPSFpGpMoveOp; extern const HChar *showMIPSFpGpMoveOp ( MIPSFpGpMoveOp ); /* Move Conditional */ typedef enum { MFpMoveCond_movns, /* FP Move Conditional on Not Zero - MIPS32 */ MFpMoveCond_movnd, MMoveCond_movn, /* Move Conditional on Not Zero */ MSeleqz, /* r6 instructions */ MSelnez, MFpSels, MFpSeld } MIPSMoveCondOp; extern const HChar *showMIPSMoveCondOp ( MIPSMoveCondOp ); /*--------- Structure for instructions ----------*/ /* Destinations are on the LEFT (first operand) */ typedef struct { MIPSInstrTag tag; union { /* Get a 32/64-bit literal into a register. May turn into a number of real insns. */ struct { HReg dst; ULong imm; } LI; /* Integer add/sub/and/or/xor. Limitations: - For add, the immediate, if it exists, is a signed 16. - For sub, the immediate, if it exists, is a signed 16 which may not be -32768, since no such instruction exists, and so we have to emit addi with +32768, but that is not possible. - For and/or/xor, the immediate, if it exists, is an unsigned 16. */ struct { MIPSAluOp op; HReg dst; HReg srcL; MIPSRH *srcR; } Alu; /* Integer shl/shr/sar. Limitations: the immediate, if it exists, is a signed 5-bit value between 1 and 31 inclusive. */ struct { MIPSShftOp op; Bool sz32; /* mode64 has both 32 and 64bit shft */ HReg dst; HReg srcL; MIPSRH *srcR; } Shft; struct { MIPSRotxOp op; HReg rd; HReg rt; HReg shift; HReg shiftx; HReg stripe; } Rotx; /* Clz, Clo, nop */ struct { MIPSUnaryOp op; HReg dst; HReg src; } Unary; /* Bit extract */ struct { HReg dst; HReg src; UInt pos; UInt size; } Ext; /* Word compare. Fake instruction, used for basic block ending */ struct { Bool syned; Bool sz32; HReg dst; HReg srcL; HReg srcR; MIPSCondCode cond; } Cmp; struct { Bool widening; /* True => widening, False => non-widening */ Bool syned; /* signed/unsigned - meaningless if widenind = False */ Bool sz32; HReg dst; HReg srcL; HReg srcR; } Mul; struct { Bool syned; /* signed/unsigned */ HReg srcL; HReg srcR; } Mult; struct { Bool syned; /* signed/unsigned - meaningless if widenind = False */ Bool sz32; Bool low; HReg dst; HReg srcL; HReg srcR; } Mulr6; struct { Bool syned; /* signed/unsigned - meaningless if widenind = False */ Bool sz32; HReg srcL; HReg srcR; } Div; struct { Bool syned; /* signed/unsigned - meaningless if widenind = False */ Bool sz32; Bool mod; HReg dst; HReg srcL; HReg srcR; } Divr6; /* Pseudo-insn. Call target (an absolute address), on given condition (which could be Mcc_ALWAYS). argiregs indicates which of $4 .. $7 (mips32) or $4 .. $11 (mips64) carries argument values for this call, using a bit mask (1<