/* -*- mode: C; c-basic-offset: 3; -*- */ /*--------------------------------------------------------------------*/ /*--- Cache-related stuff. m_cache.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2002-2017 Nicholas Nethercote njn@valgrind.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . The GNU General Public License is contained in the file COPYING. */ #include "pub_core_basics.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_mallocfree.h" #include "pub_core_machine.h" #include "pub_core_debuglog.h" #include "libvex.h" #if defined(VGA_x86) || defined(VGA_amd64) #include "pub_core_cpuid.h" // All CPUID info taken from sandpile.org/ia32/cpuid.htm */ // Probably only works for Intel and AMD chips, and probably only for some of // them. static void add_cache(VexCacheInfo *ci, VexCache cache) { static UInt num_allocated = 0; if (ci->num_caches == num_allocated) { num_allocated += 6; ci->caches = VG_(realloc)("m_cache", ci->caches, num_allocated * sizeof *ci->caches); } if (ci->num_levels < cache.level) ci->num_levels = cache.level; ci->caches[ci->num_caches++] = cache; } /* Convenience macros */ #define add_icache(level, size, assoc, linesize) \ do { \ add_cache(ci, \ VEX_CACHE_INIT(INSN_CACHE, level, size, linesize, assoc)); \ } while (0) #define add_dcache(level, size, assoc, linesize) \ do { \ add_cache(ci, \ VEX_CACHE_INIT(DATA_CACHE, level, size, linesize, assoc)); \ } while (0) #define add_ucache(level, size, assoc, linesize) \ do { \ add_cache(ci, \ VEX_CACHE_INIT(UNIFIED_CACHE, level, size, linesize, assoc)); \ } while (0) #define add_itcache(level, size, assoc) \ do { \ VexCache c = \ VEX_CACHE_INIT(INSN_CACHE, level, size, 0, assoc); \ c.is_trace_cache = True; \ add_cache(ci, c); \ } while (0) #define add_I1(size, assoc, linesize) add_icache(1, size, assoc, linesize) #define add_D1(size, assoc, linesize) add_dcache(1, size, assoc, linesize) #define add_U1(size, assoc, linesize) add_ucache(1, size, assoc, linesize) #define add_I2(size, assoc, linesize) add_icache(2, size, assoc, linesize) #define add_D2(size, assoc, linesize) add_dcache(2, size, assoc, linesize) #define add_U2(size, assoc, linesize) add_ucache(2, size, assoc, linesize) #define add_I3(size, assoc, linesize) add_icache(3, size, assoc, linesize) #define add_D3(size, assoc, linesize) add_dcache(3, size, assoc, linesize) #define add_U3(size, assoc, linesize) add_ucache(3, size, assoc, linesize) #define add_I1T(size, assoc) \ add_itcache(1, size, assoc) /* Intel method is truly wretched. We have to do an insane indexing into an * array of pre-defined configurations for various parts of the memory * hierarchy. * According to Intel Processor Identification, App Note 485. * * If a L3 cache is found, then data for it rather than the L2 * is returned via *LLc. */ static Int Intel_cache_info(Int level, VexCacheInfo *ci) { UInt cpuid1_eax; UInt cpuid1_ignore; Int family; Int model; UChar info[16]; Int i, j, trials; if (level < 2) { VG_(debugLog)(1, "cache", "warning: CPUID level < 2 for Intel " "processor (%d)\n", level); return -1; } /* family/model needed to distinguish code reuse (currently 0x49) */ VG_(cpuid)(1, 0, &cpuid1_eax, &cpuid1_ignore, &cpuid1_ignore, &cpuid1_ignore); family = (((cpuid1_eax >> 20) & 0xff) << 4) + ((cpuid1_eax >> 8) & 0xf); model = (((cpuid1_eax >> 16) & 0xf) << 4) + ((cpuid1_eax >> 4) & 0xf); VG_(cpuid)(2, 0, (UInt*)&info[0], (UInt*)&info[4], (UInt*)&info[8], (UInt*)&info[12]); trials = info[0] - 1; /* AL register - bits 0..7 of %eax */ info[0] = 0x0; /* reset AL */ if (0 != trials) { VG_(debugLog)(1, "cache", "warning: non-zero CPUID trials for Intel " "processor (%d)\n", trials); return -1; } ci->num_levels = 0; ci->num_caches = 0; ci->icaches_maintain_coherence = True; ci->caches = NULL; for (i = 0; i < 16; i++) { switch (info[i]) { case 0x0: /* ignore zeros */ break; /* TLB info, ignore */ case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x0b: case 0x4f: case 0x50: case 0x51: case 0x52: case 0x55: case 0x56: case 0x57: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x76: case 0xb0: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xba: case 0xc0: case 0xca: break; case 0x06: add_I1( 8, 4, 32); break; case 0x08: add_I1(16, 4, 32); break; case 0x09: add_I1(32, 4, 64); break; case 0x30: add_I1(32, 8, 64); break; case 0x0a: add_D1( 8, 2, 32); break; case 0x0c: add_D1(16, 4, 32); break; case 0x0d: add_D1(16, 4, 64); break; case 0x0e: add_D1(24, 6, 64); break; case 0x2c: add_D1(32, 8, 64); break; /* IA-64 info -- panic! */ case 0x10: case 0x15: case 0x1a: case 0x88: case 0x89: case 0x8a: case 0x8d: case 0x90: case 0x96: case 0x9b: VG_(core_panic)("IA-64 cache detected?!"); /* L3 cache info. */ case 0x22: add_U3(512, 4, 64); break; case 0x23: add_U3(1024, 8, 64); break; case 0x25: add_U3(2048, 8, 64); break; case 0x29: add_U3(4096, 8, 64); break; case 0x46: add_U3(4096, 4, 64); break; case 0x47: add_U3(8192, 8, 64); break; case 0x4a: add_U3(6144, 12, 64); break; case 0x4b: add_U3(8192, 16, 64); break; case 0x4c: add_U3(12288, 12, 64); break; case 0x4d: add_U3(16384, 16, 64); break; case 0xd0: add_U3(512, 4, 64); break; case 0xd1: add_U3(1024, 4, 64); break; case 0xd2: add_U3(2048, 4, 64); break; case 0xd6: add_U3(1024, 8, 64); break; case 0xd7: add_U3(2048, 8, 64); break; case 0xd8: add_U3(4096, 8, 64); break; case 0xdc: add_U3(1536, 12, 64); break; case 0xdd: add_U3(3072, 12, 64); break; case 0xde: add_U3(6144, 12, 64); break; case 0xe2: add_U3(2048, 16, 64); break; case 0xe3: add_U3(4096, 16, 64); break; case 0xe4: add_U3(8192, 16, 64); break; case 0xea: add_U3(12288, 24, 64); break; case 0xeb: add_U3(18432, 24, 64); break; case 0xec: add_U3(24576, 24, 64); break; /* Described as "MLC" in Intel documentation */ case 0x21: add_U2(256, 8, 64); break; /* These are sectored, whatever that means */ // FIXME: I did not find these in the Intel docs case 0x39: add_U2(128, 4, 64); break; case 0x3c: add_U2(256, 4, 64); break; /* If a P6 core, this means "no L2 cache". If a P4 core, this means "no L3 cache". We don't know what core it is, so don't issue a warning. To detect a missing L2 cache, we use 'L2_found'. */ case 0x40: break; case 0x41: add_U2( 128, 4, 32); break; case 0x42: add_U2( 256, 4, 32); break; case 0x43: add_U2( 512, 4, 32); break; case 0x44: add_U2( 1024, 4, 32); break; case 0x45: add_U2( 2048, 4, 32); break; case 0x48: add_U2( 3072, 12, 64); break; case 0x4e: add_U2( 6144, 24, 64); break; case 0x49: if (family == 15 && model == 6) { /* On Xeon MP (family F, model 6), this is for L3 */ add_U3(4096, 16, 64); } else { add_U2(4096, 16, 64); } break; /* These are sectored, whatever that means */ case 0x60: add_D1(16, 8, 64); break; /* sectored */ case 0x66: add_D1( 8, 4, 64); break; /* sectored */ case 0x67: add_D1(16, 4, 64); break; /* sectored */ case 0x68: add_D1(32, 4, 64); break; /* sectored */ /* HACK ALERT: Instruction trace cache -- capacity is micro-ops based. * conversion to byte size is a total guess; treat the 12K and 16K * cases the same since the cache byte size must be a power of two for * everything to work!. Also guessing 32 bytes for the line size... */ case 0x70: /* 12K micro-ops, 8-way */ add_I1T(12, 8); break; case 0x71: /* 16K micro-ops, 8-way */ add_I1T(16, 8); break; case 0x72: /* 32K micro-ops, 8-way */ add_I1T(32, 8); break; /* not sectored, whatever that might mean */ case 0x78: add_U2(1024, 4, 64); break; /* These are sectored, whatever that means */ case 0x79: add_U2( 128, 8, 64); break; case 0x7a: add_U2( 256, 8, 64); break; case 0x7b: add_U2( 512, 8, 64); break; case 0x7c: add_U2(1024, 8, 64); break; case 0x7d: add_U2(2048, 8, 64); break; case 0x7e: add_U2( 256, 8, 128); break; case 0x7f: add_U2( 512, 2, 64); break; case 0x80: add_U2( 512, 8, 64); break; case 0x81: add_U2( 128, 8, 32); break; case 0x82: add_U2( 256, 8, 32); break; case 0x83: add_U2( 512, 8, 32); break; case 0x84: add_U2(1024, 8, 32); break; case 0x85: add_U2(2048, 8, 32); break; case 0x86: add_U2( 512, 4, 64); break; case 0x87: add_U2(1024, 8, 64); break; /* Ignore prefetch information */ case 0xf0: case 0xf1: break; case 0xff: j = 0; VG_(cpuid)(4, j++, (UInt*)&info[0], (UInt*)&info[4], (UInt*)&info[8], (UInt*)&info[12]); while ((info[0] & 0x1f) != 0) { UInt assoc = ((*(UInt *)&info[4] >> 22) & 0x3ff) + 1; UInt parts = ((*(UInt *)&info[4] >> 12) & 0x3ff) + 1; UInt line_size = (*(UInt *)&info[4] & 0x7ff) + 1; UInt sets = *(UInt *)&info[8] + 1; UInt size = assoc * parts * line_size * sets / 1024; switch ((info[0] & 0xe0) >> 5) { case 1: switch (info[0] & 0x1f) { case 1: add_D1(size, assoc, line_size); break; case 2: add_I1(size, assoc, line_size); break; case 3: add_U1(size, assoc, line_size); break; default: VG_(debugLog)(1, "cache", "warning: L1 cache of unknown type ignored\n"); break; } break; case 2: switch (info[0] & 0x1f) { case 1: add_D2(size, assoc, line_size); break; case 2: add_I2(size, assoc, line_size); break; case 3: add_U2(size, assoc, line_size); break; default: VG_(debugLog)(1, "cache", "warning: L2 cache of unknown type ignored\n"); break; } break; case 3: switch (info[0] & 0x1f) { case 1: add_D3(size, assoc, line_size); break; case 2: add_I3(size, assoc, line_size); break; case 3: add_U3(size, assoc, line_size); break; default: VG_(debugLog)(1, "cache", "warning: L3 cache of unknown type ignored\n"); break; } break; default: VG_(debugLog)(1, "cache", "warning: L%u cache ignored\n", (info[0] & 0xe0) >> 5); break; } VG_(cpuid)(4, j++, (UInt*)&info[0], (UInt*)&info[4], (UInt*)&info[8], (UInt*)&info[12]); } break; default: VG_(debugLog)(1, "cache", "warning: Unknown Intel cache config value (0x%x), " "ignoring\n", info[i]); break; } } return 0; } /* AMD method is straightforward, just extract appropriate bits from the * result registers. * * Bits, for D1 and I1: * 31..24 data L1 cache size in KBs * 23..16 data L1 cache associativity (FFh=full) * 15.. 8 data L1 cache lines per tag * 7.. 0 data L1 cache line size in bytes * * Bits, for L2: * 31..16 unified L2 cache size in KBs * 15..12 unified L2 cache associativity (0=off, FFh=full) * 11.. 8 unified L2 cache lines per tag * 7.. 0 unified L2 cache line size in bytes * * #3 The AMD K7 processor's L2 cache must be configured prior to relying * upon this information. (Whatever that means -- njn) * * Also, according to Cyrille Chepelov, Duron stepping A0 processors (model * 0x630) have a bug and misreport their L2 size as 1KB (it's really 64KB), * so we detect that. * * Returns 0 on success, non-zero on failure. As with the Intel code * above, if a L3 cache is found, then data for it rather than the L2 * is returned via *LLc. */ /* A small helper */ static Int decode_AMD_cache_L2_L3_assoc ( Int bits_15_12 ) { /* Decode a L2/L3 associativity indication. It is encoded differently from the I1/D1 associativity. Returns 1 (direct-map) as a safe but suboptimal result for unknown encodings. */ switch (bits_15_12 & 0xF) { case 1: return 1; case 2: return 2; case 4: return 4; case 6: return 8; case 8: return 16; case 0xA: return 32; case 0xB: return 48; case 0xC: return 64; case 0xD: return 96; case 0xE: return 128; case 0xF: /* fully associative */ case 0: /* L2/L3 cache or TLB is disabled */ default: return 1; } } static Int AMD_cache_info(VexCacheInfo *ci) { UInt ext_level; UInt dummy, model; UInt I1i, D1i, L2i, L3i; UInt size, line_size, assoc; VG_(cpuid)(0x80000000, 0, &ext_level, &dummy, &dummy, &dummy); if (0 == (ext_level & 0x80000000) || ext_level < 0x80000006) { VG_(debugLog)(1, "cache", "warning: ext_level < 0x80000006 for AMD " "processor (0x%x)\n", ext_level); return -1; } VG_(cpuid)(0x80000005, 0, &dummy, &dummy, &D1i, &I1i); VG_(cpuid)(0x80000006, 0, &dummy, &dummy, &L2i, &L3i); VG_(cpuid)(0x1, 0, &model, &dummy, &dummy, &dummy); /* Check for Duron bug */ if (model == 0x630) { VG_(debugLog)(1, "cache", "warning: Buggy Duron stepping A0. " "Assuming L2 size=65536 bytes\n"); L2i = (64 << 16) | (L2i & 0xffff); } ci->num_levels = 2; ci->num_caches = 3; ci->icaches_maintain_coherence = True; /* Check for L3 cache */ if (((L3i >> 18) & 0x3fff) > 0) { ci->num_levels = 3; ci->num_caches = 4; } ci->caches = VG_(malloc)("m_cache", ci->num_caches * sizeof *ci->caches); // D1 size = (D1i >> 24) & 0xff; assoc = (D1i >> 16) & 0xff; line_size = (D1i >> 0) & 0xff; ci->caches[0] = VEX_CACHE_INIT(DATA_CACHE, 1, size, line_size, assoc); // I1 size = (I1i >> 24) & 0xff; assoc = (I1i >> 16) & 0xff; line_size = (I1i >> 0) & 0xff; ci->caches[1] = VEX_CACHE_INIT(INSN_CACHE, 1, size, line_size, assoc); // L2 Nb: different bits used for L2 size = (L2i >> 16) & 0xffff; assoc = decode_AMD_cache_L2_L3_assoc((L2i >> 12) & 0xf); line_size = (L2i >> 0) & 0xff; ci->caches[2] = VEX_CACHE_INIT(UNIFIED_CACHE, 2, size, line_size, assoc); // L3, if any if (((L3i >> 18) & 0x3fff) > 0) { /* There's an L3 cache. */ /* NB: the test in the if is "if L3 size > 0 ". I don't know if this is the right way to test presence-vs-absence of L3. I can't see any guidance on this in the AMD documentation. */ size = ((L3i >> 18) & 0x3fff) * 512; assoc = decode_AMD_cache_L2_L3_assoc((L3i >> 12) & 0xf); line_size = (L3i >> 0) & 0xff; ci->caches[3] = VEX_CACHE_INIT(UNIFIED_CACHE, 3, size, line_size, assoc); } return 0; } static Int get_caches_from_CPUID(VexCacheInfo *ci) { Int ret, i; UInt level; HChar vendor_id[13]; vg_assert(VG_(has_cpuid)()); VG_(cpuid)(0, 0, &level, (UInt*)&vendor_id[0], (UInt*)&vendor_id[8], (UInt*)&vendor_id[4]); vendor_id[12] = '\0'; if (0 == level) { // CPUID level is 0, early Pentium? return -1; } /* Only handling Intel and AMD chips... no Cyrix, Transmeta, etc */ if (0 == VG_(strcmp)(vendor_id, "GenuineIntel")) { ret = Intel_cache_info(level, ci); } else if (0 == VG_(strcmp)(vendor_id, "AuthenticAMD")) { ret = AMD_cache_info(ci); } else if (0 == VG_(strcmp)(vendor_id, "CentaurHauls")) { /* Total kludge. Pretend to be a VIA Nehemiah. */ ci->num_levels = 2; ci->num_caches = 3; ci->icaches_maintain_coherence = True; ci->caches = VG_(malloc)("m_cache", ci->num_caches * sizeof *ci->caches); ci->caches[0] = VEX_CACHE_INIT(DATA_CACHE, 1, 64, 16, 16); ci->caches[1] = VEX_CACHE_INIT(INSN_CACHE, 1, 64, 16, 4); ci->caches[2] = VEX_CACHE_INIT(UNIFIED_CACHE, 2, 64, 16, 16); ret = 0; } else { VG_(debugLog)(1, "cache", "CPU vendor ID not recognised (%s)\n", vendor_id); return -1; } /* Successful! Convert sizes from KB to bytes */ for (i = 0; i < ci->num_caches; ++i) { ci->caches[i].sizeB *= 1024; } return ret; } static Bool get_cache_info(VexArchInfo *vai) { Int ret = get_caches_from_CPUID(&vai->hwcache_info); return ret == 0 ? True : False; } #elif defined(VGA_arm) || defined(VGA_ppc32) || \ defined(VGA_ppc64be) || defined(VGA_ppc64le) || \ defined(VGA_mips32) || defined(VGA_mips64) || \ defined(VGA_arm64) || defined(VGA_nanomips) static Bool get_cache_info(VexArchInfo *vai) { vai->hwcache_info.icaches_maintain_coherence = False; return False; // not yet } #elif defined(VGA_s390x) static ULong ecag(UInt ai, UInt li, UInt ti) { register ULong result asm("2") = 0; register ULong input asm("3") = (ai << 4) | (li << 1) | ti; asm volatile(".short 0xeb20\n\t" ".long 0x3000004c\n\t" : "=d" (result) : "d" (input)); return result; } static UInt get_cache_info_for_level(ULong topology, UInt level) { return (topology >> (56 - level * 8)) & 0xff; } static ULong get_line_size(UInt level, Bool is_insn_cache) { return ecag(1, level, is_insn_cache); } static ULong get_total_size(UInt level, Bool is_insn_cache) { return ecag(2, level, is_insn_cache); } static ULong get_associativity(UInt level, Bool is_insn_cache) { return ecag(3, level, is_insn_cache); } static VexCache get_cache(UInt level, VexCacheKind kind) { Bool is_insn_cache = kind == INSN_CACHE; UInt size = get_total_size(level, is_insn_cache); UInt line_size = get_line_size(level, is_insn_cache); UInt assoc = get_associativity(level, is_insn_cache); return VEX_CACHE_INIT(kind, level + 1, size, line_size, assoc); } static Bool get_cache_info(VexArchInfo *vai) { VexCacheInfo *ci = &vai->hwcache_info; ci->icaches_maintain_coherence = True; if (! (vai->hwcaps & VEX_HWCAPS_S390X_GIE)) { // ECAG is not available return False; } UInt level, cache_kind, info, i; ULong topology = ecag(0, 0, 0); // get summary /* ECAG supports at most 8 levels of cache. Find out how many levels of cache and how many caches there are. */ ci->num_levels = 0; ci->num_caches = 0; for (level = 0; level < 8; level++) { info = get_cache_info_for_level(topology, level); if ((info & 0xc) == 0) break; // cache does not exist at this level ++ci->num_levels; cache_kind = info & 0x3; switch (cache_kind) { case 0: ci->num_caches += 2; break; /* separate data and insn cache */ case 1: ci->num_caches += 1; break; /* only insn cache */ case 2: ci->num_caches += 1; break; /* only data cache */ case 3: ci->num_caches += 1; break; /* unified data and insn cache */ } } ci->caches = VG_(malloc)("m_cache", ci->num_caches * sizeof *ci->caches); i = 0; for (level = 0; level < ci->num_levels; level++) { info = get_cache_info_for_level(topology, level); cache_kind = info & 0x3; switch (cache_kind) { case 0: /* separate data and insn cache */ ci->caches[i++] = get_cache(level, INSN_CACHE); ci->caches[i++] = get_cache(level, DATA_CACHE); break; case 1: /* only insn cache */ ci->caches[i++] = get_cache(level, INSN_CACHE); break; case 2: /* only data cache */ ci->caches[i++] = get_cache(level, DATA_CACHE); break; case 3: /* unified data and insn cache */ ci->caches[i++] = get_cache(level, UNIFIED_CACHE); break; } } return True; } #else #error "Unknown arch" #endif /* Debug information */ static void write_cache_info(const VexCacheInfo *ci) { UInt i; VG_(debugLog)(1, "cache", "Cache info:\n"); VG_(debugLog)(1, "cache", " #levels = %u\n", ci->num_levels); VG_(debugLog)(1, "cache", " #caches = %u\n", ci->num_caches); for (i = 0; i < ci->num_caches; ++i) { VexCache *c = ci->caches + i; const HChar *kind; VG_(debugLog)(1, "cache", " cache #%u:\n", i); switch (c->kind) { case INSN_CACHE: kind = "insn"; break; case DATA_CACHE: kind = "data"; break; case UNIFIED_CACHE: kind = "unified"; break; default: kind = "unknown"; break; } VG_(debugLog)(1, "cache", " kind = %s\n", kind); VG_(debugLog)(1, "cache", " level = %u\n", c->level); VG_(debugLog)(1, "cache", " size = %u bytes\n", c->sizeB); VG_(debugLog)(1, "cache", " linesize = %u bytes\n", c->line_sizeB); VG_(debugLog)(1, "cache", " assoc = %u\n", c->assoc); } } static Bool cache_info_is_sensible(const VexCacheInfo *ci) { UInt level, i; Bool sensible = True; /* There must be at most one cache of a given kind at the same level. If there is a unified cache at a given level, no other cache may exist at that level. */ for (level = 1; level <= ci->num_levels; ++level) { UInt num_icache, num_dcache, num_ucache; num_icache = num_dcache = num_ucache = 0; for (i = 0; i < ci->num_caches; ++i) { if (ci->caches[i].level == level) { switch (ci->caches[i].kind) { case INSN_CACHE: ++num_icache; break; case DATA_CACHE: ++num_dcache; break; case UNIFIED_CACHE: ++num_ucache; break; } } } if (num_icache == 0 && num_dcache == 0 && num_ucache == 0) { VG_(debugLog)(1, "cache", "warning: No caches at level %u\n", level); sensible = False; } if (num_icache > 1 || num_dcache > 1 || num_ucache > 1) { VG_(debugLog)(1, "cache", "warning: More than one cache of a given " "kind at level %u\n", level); sensible = False; } if (num_ucache != 0 && (num_icache > 0 || num_dcache > 0)) { VG_(debugLog)(1, "cache", "warning: Unified cache and I/D cache " "at level %u\n", level); sensible = False; } } /* If there is a cache at level N > 1 there must be a cache at level N-1 */ for (level = 2; level <= ci->num_levels; ++level) { Bool found = False; for (i = 0; i < ci->num_caches; ++i) { if (ci->caches[i].level == level - 1) { found = True; break; } } if (! found) { VG_(debugLog)(1, "cache", "warning: Cache at level %u but no cache " "at level %u\n", level, level - 1); sensible = False; } } return sensible; } /* Autodetect the cache information for this host and stuff it into VexArchInfo::hwcache_info. Return True if successful. */ Bool VG_(machine_get_cache_info)(VexArchInfo *vai) { Bool ok = get_cache_info(vai); VexCacheInfo *ci = &vai->hwcache_info; if (! ok) { VG_(debugLog)(1, "cache", "Could not autodetect cache info\n"); } else { ok = cache_info_is_sensible(ci); if (! ok) { VG_(debugLog)(1, "cache", "Autodetected cache info is not sensible\n"); } else { VG_(debugLog)(1, "cache", "Autodetected cache info is sensible\n"); } write_cache_info(ci); /* write out for debugging */ } if (! ok ) { /* Reset cache info */ ci->num_levels = 0; ci->num_caches = 0; VG_(free)(ci->caches); ci->caches = NULL; } return ok; } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/