/* Copyright (c) by respective owners including Yahoo!, Microsoft, and individual contributors. All rights reserved. Released under a BSD license as described in the file LICENSE. */ #pragma once #include #include "parse_primitives.h" struct shared_data; struct vw; class loss_function { public: // Identifies the type of the implementing loss function, matches the name used in getLossFunction. virtual std::string getType() = 0; /* * getLoss evaluates the example loss. * The function returns the loss value */ // virtual float getLoss(example *&ec, gd_vars &vars) = 0; virtual float getLoss(shared_data*, float prediction, float label) = 0; /* * getUpdate evaluates the update scalar * The function return the update scalar */ virtual float getUpdate(float prediction, float label, float update_scale, float pred_per_update) = 0; virtual float getUnsafeUpdate(float prediction, float label, float eta_t) = 0; // the number of examples of the opposite label such that updating with // that number results in the opposite label. // 0 = prediction + pred_per_update // * getUpdate(prediction, opposite, pred_per_update*getRevertingWeight(), pred_per_update) virtual float getRevertingWeight(shared_data*, float prediction, float eta_t) = 0; virtual float getSquareGrad(float prediction, float label) = 0; virtual float first_derivative(shared_data*, float prediction, float label) = 0; virtual float second_derivative(shared_data*, float prediction, float label) = 0; virtual ~loss_function(){}; }; loss_function* getLossFunction(vw&, std::string funcName, float function_parameter = 0);